Золотое сечение гармоническая пропорция — страница 7
в цифрах. Когда цифры, выражающие длины отрезков, были Золотые пропорции в фигуре человека получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи. В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д Ряд Фибоначчи С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр: Месяцы 0 1 2 3 4 5 6 7 8 9 10 11 12 и т.д. Пары кроликов 0 1 1 2 3 5 8 13 21 34 55 89 144 и т.д. Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д.известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.. Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16... Природа. А теперь перейдем к Природе, которая дает огромное количество проявлений Золотого Сечения и чисел Фибоначчи. Приведем несколько наглядных примеров проявления Золотого Сечения в Природе. Филлотаксисные структуры, основанные на числах Фибоначчи: сосновая шишка; головка подсолнечника; ананас; головка цветной капусты «Золотые» спирали в морских раковинах Эти наглядные примеры
Похожие работы
- Рефераты
- Рефераты