WIRELESS LOCAL AREA NETWORK WLAN Essay Research

  • Просмотров 369
  • Скачиваний 5
  • Размер файла 17
    Кб

WIRELESS LOCAL AREA NETWORK (WLAN) Essay, Research Paper WIRELESS LOCAL AREA NETWORK (WLAN) 1.Introduction. A wireless LAN (WLAN) is a flexible data communication system implemented as an extension to, or as an alternative for, a wired LAN within a building or campus. Using electromagnetic waves, WLANs transmit and receive data over the air, minimizing the need for wired connections. Thus, WLANs combine data connectivity with user mobility, and, through simplified configuration, enable movable LANs. Over the last seven years, WLANs have gained strong popularity in a number of vertical markets, including the health-care, retail, manufacturing, warehousing, and academic arenas. These industries have profited from the productivity gains of using hand-held terminals and notebook

computers to transmit real-time information to centralized hosts for processing. Today WLANs are becoming more widely recognized as a general-purpose connectivity alternative for a broad range of business customers. The U.S. wireless LAN market is rapidly approaching $1 billion in revenues. 2.How Wireless LANs work? Wireless LANs use electromagnetic airwaves (radio and infrared) to communicate information from one point to another without relying on any physical connection. Radio waves are often referred to as radio carriers because they simply perform the function of delivering energy to a remote receiver. The data being transmitted is superimposed on the radio carrier so that it can be accurately extracted at the receiving end. Once data is modulated onto the radio carrier, the

radio signal occupies more than a single frequency, since the frequency or bit rate of the modulating information adds to the carrier. Multiple radio carriers can exist in the same space at the same time without interfering with each other if the radio waves are transmitted on different radio frequencies. To extract data, a radio receiver tunes in (or selects) one radio frequency while rejecting all other radio signals on different frequencies. In a typical WLAN configuration, a transmitter/receiver (transceiver) device, called an access point, connects to the wired network from a fixed location using standard Ethernet cable. At a minimum, the access point receives, buffers, and transmits data between the WLAN and the wired network infrastructure. A single access point can

support a small group of users and can function within a range of less than one hundred to several hundred feet. The access point is usually mounted high but may be mounted essentially anywhere that is practical as long as the desired radio coverage is obtained. End users access the WLAN through wireless LAN adapters, which are implemented as PC cards in notebook computers, or use ISA or PCI adapters in desktop computers. WLAN adapters provide an interface between the client network operating system (NOS) and the airwaves (via an antenna). The nature of the wireless connection is transparent to the NOS. 3.Why Wireless? The widespread reliance on networking in business and the meteoric growth of the Internet and online services are strong testimonies to the benefits of shared data

and shared resources. With wireless LANs, users can access shared information without looking for a place to plug in, and network managers can set up or augment networks without installing or moving wires. Wireless LANs offer the following productivity, convenience, and cost advantages over traditional wired networks: Mobility: Wireless LAN systems can provide LAN users with access to real-time information anywhere in their organization. This mobility supports productivity and service opportunities not possible with wired networks. Installation Speed and Simplicity: Installing a wireless LAN system can be fast and easy and can eliminate the need to pull cable through walls and ceilings. Installation Flexibility: Wireless technology allows the network to go where wire cannot go.