Вывод уравнения Шрёдингера — страница 5

  • Просмотров 5926
  • Скачиваний 277
  • Размер файла 39
    Кб

одинакова во всех точках пространства. Но такие случаи сле­дует рассматривать как идеализации реальной ситуации, в ко­торой частица не уходит на бесконечность, а вынуждена нахо­диться в ограниченной области пространства. Тогда нормиров­ка не вызывает затруднений. Итак, непосредственный физический смысл связывается не с самой функцией Ψ, а с ее модулем Ψ*Ψ. Почему же в квантовой теории оперируют с волновыми функциями

Ψ, а не непосредственно с экспериментально наблюдаемыми величина­ми Ψ*Ψ? Это необходимо для истолкования волновых свойств вещества - интерференции и дифракции. Здесь дело обстоит совершенно так же, как во всякой волновой теории. Она (во всяком случае в линейном приближении) принимает справед­ливость принципа суперпозиции самих волновых полей, а не их интенсивностей и, таким образом, достигает включения в тео­рию явлений

интерференции и дифракции волн. Так и в кван­товой механике принимается в качестве одного из основных по­стулатов принцип суперпозиции волновых функций, заключающийся в следующем. Если волновые функ­ции, описывающие какие-то два состояния частицы, то всякая их линейная комбинация с постоянными коэффициентами с1Ψ1 + с2Ψ2 представляет также волновую функцию той же ча­стицы, описывающую какое-то ее состояние. Найдя Ψ

указан­ным путем, можно в дальнейшем определить и плотность ве­роятности Ψ*Ψ в состоянии Ψ. Оправданием такого принципа суперпозиции является согла­сие с опытом вытекающих из него следствий. Является ли прин­цип суперпозиции точным законом природы, или он верен толь­ко в линейном приближении, этот вопрос не может считаться выясненным. Подчеркнем особо, что физический смысл волновой функции Ψ связан не только с ее

модулем, но и с ее фазой, определяемой мнимой частью этой функции. Если бы речь шла о волновой функции только одного состояния, то можно было бы ограничиться од­ним только модулем. Но если речь идет о наложении состояний, то происходит их интерференция, а она определяется относи­тельной разностью фаз волновых функций, описывающих эти состояния. Частота волны де Бройля ω и вообще частота волновой функции относятся к

принципиально ненаблюдаемым величи­нам. Этим можно воспользоваться, чтобы перейти к квантовой механике в нерелятивистской форме. И в классической меха­нике обширная область явлений охватывается в нерелятивист­ском приближении. То же может быть сделано и в квантовой механике. К тому же здесь переход к релятивистскому рас­смотрению осложняется следующим обстоятельством. В сильных полях, когда энергия поля (например,