Влияние метилирование поверхности на устойчивость наночастиц кремния — страница 2

  • Просмотров 1133
  • Скачиваний 53
  • Размер файла 172
    Кб

наночастиц кремния в воздухе. Эффективный способ стабилизации поверхности частиц и их фотолюминесцентных (ФЛ) свойств представляет собой пришивку органического монослоя на водородо-насыщенную поверхность наночастиц путем реакции гидросилизации. Однако, в общем это ранее не представлялось возможным для кремниевых наночастиц, излучающих голубой цвет (~1 нм в диаметре). Получение органически защищенных наночастиц кремния,

испускающих голубой цвет, и остающихся стабильными в воздухе, оставалось проблематичным. Природа голубого излучения кремниевых наночастиц кажется зависит от метода получения и, в общем, недостаточно хорошо понята. Группа Свихарта развила метод для приготовления в макроскопических количествах люминесцентных наночастиц кремния, излучающих в пределах от красного до зеленого цвета. Метод основан на разложении SiH4-H2-He смеси CO2

лазером с последующим травлением в концентрированной HF/HNO3 смеси. Опыты показали, что даже частичное метилирование нанокластеров приводит к резкому сокращению процесса окисления, что объясняется большой устойчивостью органических групп к кислороду. Кроме того, объемные органические функциональные группы закрывают поверхность кластера и тем самым уменьшают вероятность встречи поверхностных атомов с молекулами кислорода.

Тем не менее, в настоящее время отсутствует микроскопическая модель такого насыщения, степень насыщения и ее влияние на устойчивость кластера и зонные характеристики. Эти водородо-насыщенные люминесцентные частицы кремния вступали в реакцию с разными насыщающими молекулами с двойными связями. Это давало защищенные органическими молекулами наночастицы кремния с высоким покрытием поверхности пришитыми органическими

молекулами. Эти частицы достаточно стойки к оксидизации. Однако, когда нагревают частиц до 140 C или освещают ультрафиолетовым излучением с длиной волны 254 нм в течение нескольких часов, поверхность частиц без пришитых органических молекул частично оксидизируется, в то время как наночастицы с пришитыми органическими молекулами остаются неизменными. В конечном итоге это приводит к большому сдвигу в голубой области ФЛ спектра,

однако механизм происхождения такого сдвига еще недостаточно хорошо понят. В практическом отношении это дает способ получения органически покрытых частиц со стабильной голубой эмиссией из относительно легко получаемых частиц, излучающих желтый цвет. Фундаментальное понимание этих изменений в ФЛ спектре необходимо для широкого применения этой технологии. В данном сообщении мы приводим результаты исследований малых