Вакансионное Распухание

  • Просмотров 2802
  • Скачиваний 544
  • Размер файла 565
    Кб

Вакансионное распухание. 1. Уравнения концентрации точечных дефектов. Основу теоретических моделей распухания составляют кинетические уравнения концентрации точечных дефектов среды, содержащей стоки. При этом предполагается, что концентрация радиационных точечных дефектов при характерных температурах распухания (0,2-0,6) Тпл превосходит концентрацию термически равновесных дефектов. Вакансии и межузельные атомы, мигрируя

по решетке, могут: во-первых, рекомбинировать; во-вторых, образовывать скопления одноименных дефектов и, в-третьих, уходить на стоки, в качестве которых служат сетка дислокаций, дислокационные петли, поры и другие протяженные дефекты. Следовательно, скорость изменения концентрации межузельных атомов и вакансий равна разности скоростей их образования и гибели, что может быть описано кинетическими уравнениями (1)-(2) где Сv., С i -

усредненные концентрации вакансий и межузельных атомов; к -скорость образования пар Френкеля; W - атомный объем; Ns -число стоков типа S в единице объема; Isv и Isi -число вакансий и межузель­ных атомов, приходящих в единицу времени на сток типа S ; ap -коэффици­ент взаимной рекомбинации точечных дефектов. Для нахождения входящих в (1), (2) величин Isv , Isi решается диффузионная задача миграции точечных дефектов в упругом поле, создаваемом

стоком типа S , а для этого необходимо знать энергию взаимодействия точечных дефектов со стоками. Считается, что точечные дефекты в первом приближении с порами не взаимо­действуют. С дислокациями они взаимодействуют по нескольким механиз­мам, наиболее важными из которых являются размерное взаимодействие и модульный эффект. 2. Поток точечных дефектов на дислокацию Размерное взаимодействие, как известно, дает наибольший вклад

в полную энергию взаимодействия между дислокацией и точечным дефектом. Оно имеет упругую природу и фактически является взаимодействием дальнодействующего поля напряжения дислокации с полем атомных смещений вокруг точечного дефекта. Для краевой прямолинейной дислокации, направ­ленной вдоль оси z: (3) где r - расстояние дефекта от дислокации; DVa - релаксационный объем, разница между объемом дефекта и атомным объемом; n -