Using Irradiation To Make Food Safer For — страница 3

  • Просмотров 231
  • Скачиваний 5
  • Размер файла 18

machinery do the dangerous work. When the cobalt-60 is not in use, the sourceracks travel into deep tanks of water, and in electron beam facilities, the electron beam guns are turned off when not in use. Irradiation has been approved worldwide in more than thirty-eight countries. More than thirty commercial irradiation plants are in operation (Murano 3). For example, Odessa, a port on the Black Sea, uses electron gun type irradiation to ionize two-hundred metric tons of fod per hour (Satin 16). Four-million tons of spices and seasonings and seven-million tons of poultry are irradiated in several facilities in France (Murano 4). There are many advantages that irradiation holds over traditional methods of food decontamination. Irradiation can be used on meats, seafood, fruits and

vegetables, and herbs and spices. Pathogens in food can be eliminated by cooking, but few people want to buy meats, fruits, and vegetables that have already been cooked. Chemical washes, steaming, and chlorinated ozone water baths, combined, are not as effective at killing pathogens as irradiation (Sihna 67). Also, irradiation of food can be done after the food has been packaged. This can seal out bacteria if the package is air tight. With other conventional methods, the food is decontaminated, then it is packaged. This leaves a chance for pathogens to reenter the food before or during packaging. In 1965 the surgeon general concluded that food irradiated with up to fifty-six kiloGrays is safe to eat (Murano 4). A list of approvals by the FDA concerning irradiation of specific

foods and the year the approval was given is as follows: wheat and wheat flower may be irradiated with .2 to .5 kiloGrays for insect disinfestation, 1963; white potatoes can be irradiated with 0.05 to 0.15 kiloGrays to inhibit sprouting, 1964; spices and dehydrated vegetable seasonings can be irradiated with up to thirty kiloGrays to control microbial contamination, 1983; dried enzymes may be irradiated with up to ten kiloGrays, and pork carcasses and fresh pork cuts with 0.3 to 1.0 kiloGrays, 1983 (Murano 6-7). Stephen Chapman from the Chicago Tribune says that “The Food and Drug Administration, which is about as hasty and reckless as your Aunt Minnie, has given the green light to food irradiation” (3). Since the Cold War, the nuclear industry has an interest in peaceful

uses for radiation, such as irradiation. The use of irradiation to control food-borne disease and to fight world hunger has been endorsed by the Food and Agriculture Organization and the World Health Organization. These organizations say that the cost of decontaminating the whole food chain would be so high that simply irradiating contaminated food would be a better solution (Food Irradiation: Solution or Threat). “The critics make a good point, (sic) which is that the consumer ought to be paying attention to the advice of scientists. If the buying public does that, it will discover that the opponents of food irradiation have fewer allies in the scientific community than Jean Dixon,” says Stephan Chapman (3). With all the benefits of irradiation, there is still concern among

some. Drexler says “Even the FDA admits that it is impossible to assess the effects of eating irradiated food, because the usual scientific approach, exaggerating normal dosage, won’t work: Neither lab animals nor humans can eat normally irradiated food in large quantities, and they risk exposure to actual radioactivity if they eat food exposed to extremely high levels of radiation.” (60) More than a dozen of America’s poultry processors are against irradiation and will not use it to treat their chickens (Chapman 3). Irradiation does have some problems in its current state. It has a limited range of use and is expensive. Irradiation has no effect against viruses. Michael Jacobson, the director of the Center for Science in the Public Interest, says irradiation is not

“the silver bullet of improving the safety of meat products.” (Sihna 66-67) He says that food industries should spend more time experimenting with inexpensive chemical washes. He says that irradiation cannot replace clean and safe food processing habits. The International Consumers Union says that without investment from consumers, irradiation will not play a large role in the prevention of diseases. Even though irradiation is very effective at decontaminating food, there is still room for human error during cooking. The food can still be cross contaminated by unwashed hands and other infected kitchen utensils. Consumers should be careful when handling irradiated foods; the food may be germ-free in the package, but most people’s kitchens are not. Scientific studies