Туннелирование в микроэлектронике — страница 8

  • Просмотров 2553
  • Скачиваний 170
  • Размер файла 76
    Кб

областями (порядка 1018 см-3). На рис.2.4.1 показана энергетическая диаграмма p-n-перехода при обратном напряжении, стрелкой обозначено направление туннельного перехода электрона из валентной зоны p-области в зону проводимости n-области. p n Еп Е­ф 3 Ев ΔЕз (φ0+|U|) ΔEтун 1 2 Еп Е­ф Ев Рис. 2.4.1 Энергетическая диаграмма p-n-перехода при обратном напряжении. Еп – дно зоны проводимости; Еф – уровень Ферми; Ев – потолок валентной зоны.

Электрон туннелирует из точки 1 в точку 2, он проходит под энергетическим барьером треугольной формы (заштрихованный треугольник с вершинами 1-3), энергия электрона при этом не изменяется. Туннельные переходы возможны для электронов, энергия которых соответствует интервалу туннелирования ΔЕтун, в котором по обе стороны расположены разрешённые уровни энергии. Высота барьера равна ΔЕз, она, как правило, меньше высоты

p-n-перехода, равной q(φ0+|U|). Толщина барьера с ростом обратного напряжения уменьшается, что повышает вероятность туннелирования. Туннельный ток резко увеличивается, так как возрастает интервал туннелирования и число электронов в нём. Туннельный пробой в чистом виде проявляется только при высоких концентрациях примесей (более 2.5 ЭФФЕКТЫ ДЖОЗЕФСОНА В п. 2.3 рассматривалось туннельное прохождение электронов сквозь тонкие

диэлектрические плёнки, помещённые между проводящими электродами. Туннельный ток возникает и между двумя сверхпроводниками, разделёнными тонкой плёнкой. Однако в этом случае при толщине плёнки менее Если сверхпроводящую структуру (рис. 2.5.1) включить в цепь постоянного тока, то через контакт будет протекать ток, однако падение напряжения на контакте будет равно нулю. Этот эффект впервые был открыт в 1962 г. Джозефсоном и получил

название стационарного эффекта Джозефсона. 1…5 нм СП СП Рис. 2.5.1 Сверхпроводящая структура Этот эффект объясняется тем, что через плёнку туннелируют куперовские пары. Куперовская пара – это два электрона с противоположно направленными спинами. Поэтому спин пары равен нулю, и она представляет собой бозон. Бозоны склонны накапливаться в основном энергетическом состоянии, из которого их сравнительно трудно перевести в

возбуждённое состояние. Следовательно, куперовские пары, придя в согласованное движение, остаются в этом состоянии неограниченно долго. Такое согласованное движение пар и есть ток сверхпроводимости. Между сверхпроводниками в этом случае возможно протекание туннельного тока обычных электронов, однако сверхпроводящий туннельный ток шунтирует его и напряжение на контакте равно нулю. Вольт-амперная характеристика