TheIndustrial Revoultion And Its Impact On

  • Просмотров 226
  • Скачиваний 4
  • Размер файла 20

TheIndustrial Revoultion And Its Impact On Lynn Shoemakers Essay, Research Paper In 17th-century Europe, boots were generally worn. Shoes had moderately high heels and were often decorated with large rosettes made of lace and ribbons. In America, men and women wore stout leather shoes with a moderate heel. In the 18th century, shoes were decorated with gold and silver buckles and real or imitation gemstones. In America, women’s dress shoes copied those in France and England and were made of brocade and had a French heel and usually a buckle; to protect the shoe, an overshoe, called a patten, often of the same material, was worn. By 1760 the first shoe factory had appeared, in Massachusetts, and shoes began to be produced in quantity. It was not until the 19th century,

however, and the development of modern machinery such as the sewing machine, that shoes could be made quickly and inexpensively. In the 20th century, shoes are made in innumerable styles, with various designs and colours. Blake, Lyman Reed b. Aug. 24, 1835, South Abington, Mass., U.S.d. Oct. 5, 1883 American inventor who devised a sewing machine for sewing the soles of shoes to the uppers. At an early age Blake began working for local shoemakers, including his brother, Samuel. He later worked for Isaac M. Singer’s company, setting up sewing machines in shoe factories. In 1856 he became a partner in a shoemaking firm that he mechanized to the fullest extent then possible. At that time he conceived of his machine. He first had to design a shoe that could be made this way. In 1858

he constructed a working model and received a patent. He sold his patent to Gordon McKay in 1859 and worked for McKay from 1861 until his retirement in 1874, selling and installing his machines in factories throughout New England. An outstanding feature of the Industrial Revolution has been the advance in power technology. At the beginning of this period, the major sources of power available to industry and any other potential consumer were animate energy and the power of wind and water, the only exception of any significance being the atmospheric steam engines that had been installed for pumping purposes, mainly in coal mines. It is to be emphasized that this use of steam power was exceptional and remained so for most industrial purposes until well into the 19th century. Steam

did not simply replace other sources of power: it transformed them. The same sort of scientific inquiry that led to the development of the steam engine was also applied to the traditional sources of inanimate energy, with the result that both waterwheels and windmills were improved in design and efficiency. Numerous engineers contributed to the refinement of waterwheel construction, and by the middle of the 19th century new designs made possible increases in the speed of revolution of the waterwheel and thus prepared the way for the emergence of the water turbine, which is still an extremely efficient device for converting energy. Although the qualification regarding older sources of power is important, steam became the characteristic and ubiquitous power source of the British

Industrial Revolution. Little development took place in the Newcomen atmospheric engine until James Watt patented a separate condenser in 1769, but from that point onward the steam engine underwent almost continuous improvements for more than a century. Watt’s separate condenser was the outcome of his work on a model of a Newcomen engine that was being used in a University of Glasgow laboratory. Watt’s inspiration was to separate the two actions of heating the cylinder with hot steam and cooling it to condense the steam for every stroke of the engine. By keeping the cylinder permanently hot and the condenser permanently cold, a great economy on energy used could be effected. This brilliantly simple idea could not be immediately incorporated in a full-scale engine because the