The Future Of Human Evolution Essay Research — страница 2

  • Просмотров 205
  • Скачиваний 5
  • Размер файла 17
    Кб

other in the present world, thus the large Chinese population. Therefore some group traits ae more common than others. Yet the loss of these alleles and the gain of these mutations offer marginal contributions to our species and thus have little or no effect. The first step in understand evolution in present terms is to mention genetic engineering (including genetic drift). The first step to understanding genetic engineering, and embracing its possibilities for society, is to obtain a rough knowledge base of its history and method. The basis for altering the evolutionary process is dependant on the understanding of how individuals pass on characteristics to their offspring. Genetics achieved its first foothold on the secrets of nature’s evolutionary process when an Austrian

monk named Gregor Mendel developed the first “laws of heredity.” Using these laws, scientists studied the characteristics of organisms for most of the next one hundred years following Mendel’s discovery. These early studies concluded that each organism has two sets of character determinants, or genes (Stableford 16). For instance, in regards to eye color, a child could receive one set of genes from his father that were encoded one blue, and the other brown. The same child could al so receive two brown genes from his mother. The conclusion for this inheritance would be the child has a three in four chance of having brown eyes, and a one in three chance of having blue eyes (Stableford 16). Genes are transmitted through chromosomes which reside in the nucleus of every living

organism’s cells. Each chromosome is made up of fine strands of deoxyribonucleic acids, or DNA. The information carried on the DNA determines the cells function within the organism. Sex cells are the only cells that contain a complete DNA map of the organism, therefore, “the structure of a DNA molecule or combination of DNA molecules determines the shape, form, and function of the [organism's] offspring ” (Lewin 1). DNA discovery is attributed to the research of three scientists, Francis Crick, Maurice Wilkins, and James Dewey Watson in 1951. They were all later accredited with the Nobel Price in physiology and medicine in 1962 (Lewin 1). “The new science of genetic engineering aims to take a dramatic short cut in the slow process of evolution” (Stableford 25). In

essence, scientists aim to remove one gene from an organism’s DNA, and place it into the DNA of another organism. This would create a new DNA strand, full of new encoded instructions; a strand that would have taken Mother Nature millions of years of natural selection to develop. Isolating and removing a desired gene from a DNA strand involves many different tools. DNA can be broken up by exposing it to ultra-high-frequency sound waves, but this is an extremely inaccurate way of isolating a desirable DNA section (Stableford 26). A more accurate way of DNA splicing is the use of “restriction enzymes, which are produced by various species of bacteria” (Clarke 1). The restriction enzymes cut the DNA strand at a particular location called a nucleotide base, which makes up a DNA

molecule. Now that the desired portion of the DNA is cut out, it can be joined to another strand of DNA by using enzymes called ligases. The final important step in the creation of a new DNA strand is giving it the ability to self-replicate. This can be accomplished by using special pieces of DNA, called vectors, that permit the generation of multiple copies of a total DNA strand and fusing it to the newly created DNA structure. Another newly developed method, called polymerase chain reaction, allows for faster replication of DNA strands and does not require the use of vectors (Clarke 1). Genetic drift, another important factor when discussing evolution, is the study of statistical population genetics. ). One aspect of genetic drift is the random nature of transmitting alleles

from one generation to the next given that only a fraction of all possible zygotes become mature adults. The easiest case to visualize is the one which involves binomial sampling error. If a pair of diploid sexually reproducing parents (such as humans) have only a small number of offspring then not all of the parent’s alleles will be passed on to their progeny due to chance assortment of chromosomes at meiosis. In a large population this will not have much effect in each generation because the random nature of the process will tend to average out. But in a small population the effect could be rapid and significant. Suzuki et al. explain it as well as anyone I’ve seen; “If a population is finite in size (as all populations are) and if a given pair of parents have only a