The Fourth Law Of Robotics Essay Research — страница 2

  • Просмотров 191
  • Скачиваний 5
  • Размер файла 16

forced to make a binary selection: one type of physical entities will be classified as robots – all the others will be grouped into “non-robots”. Will non-robots include monkeys and parrots ? Yes, unless the manufacturers equip the robots with digital or optical or molecular equivalent of the human image in varying positions (standing, sitting, lying down). But this is a cumbersome solution and not a very effective one: there will always be the odd position which the robot will find hard to locate in its library. A human disk thrower or swimmer may easily be passed over as “non-human” by a robot. So will certain types of amputated invalids. The first solution is even more seriously flawed. It is possible to design a test which the robot will apply to distinguish a robot

from a human. But it will have to be non-intrusive and devoid of communication or with very limited communication. The alternative is a prolonged teletype session behind a curtain, after which the robot will issue its verdict: the respondent is a human or a robot. This is ridiculous. Moreover, the application of such a test will make the robot human in most of the important respects. A human knows other humans for what they are because he is human. A robot will have to be human to recognize another, it takes one to know one, the saying (rightly) goes. Let us assume that by some miraculous way the problem will be overcome and robots will unfailingly identify humans. The next question pertains to the notion of “injury” (still in the First Law). Is it limited only to a physical

injury (the disturbance of the physical continuity of human tissues or of the normal functioning of the human body)? Should it encompass the no less serious mental, verbal and social injuries (after all, they are all known to have physical side effects which are, at times, no less severe than direct physical “injuries”). Is an insult an injury? What about being grossly impolite, or psychologically abusing or tormenting someone? Or offending religious sensitivities, being politically incorrect ? The bulk of human (and, therefore, inhuman) actions actually offend a human being, has the potential to do so or seem to be doing so. Take surgery, driving a car, or investing all your money in the stock exchange – they might end in coma, accident, or a stock exchange crash

respectively. Should a robot refuse to obey human instructions which embody a potential to injure said instruction-givers? Take a mountain climber – should a robot refuse to hand him his equipment lest he falls off the mountain in an unsuccessful bid to reach the peak? Should a robot abstain from obeying human commands pertaining to crossing busy roads or driving sports cars? Which level of risk should trigger the refusal program? In which stage of a collaboration should it be activated? Should a robot refuse to bring a stool to a person who intends to commit suicide by hanging himself (that’s an easy one), should he ignore an instruction to push someone jump off a cliff (definitely), climb the cliff (less assuredly so), get to the cliff (maybe so), get to his car in order to

drive to the cliff in case he is an invalid – where does the responsibility and obeisance buck stop? Whatever the answer, one thing is clear: such a robot must be equipped with more than a rudimentary sense of judgement, with the ability to appraise and analyse complex situations, to predict the future and to base his decisions on very fuzzy algorithms (no programmer can foresee all possible circumstances). To me, this sounds much more dangerous than any recursive automaton which will NOT include the famous Three Laws. Moreover, what, exactly, constitutes “inaction”? How can we set apart inaction from failed action or, worse, from an action which failed by design, intentionally? If a human is in danger and the robot tried to save him and failed – how will we be able to

determine to what extent it exerted itself and did everything that it could do? How much of the responsibility for the inaction or partial action or failed action should be attributed to the manufacturer – and how much imputed to the robot itself? When a robot decides finally to ignore its own programming – how will we be informed of this momentous event? Outside appearances should hardly be expected to help us distinguish a rebellious robot from a lackadaisical one. The situation gets much more complicated when we consider conflict states. Imagine that a robot has to hurt one human in order to prevent him from hurting another. The Laws are absolutely inadequate in this case. The robot should either establish an empirical hierarchy of injuries – or an empirical hierarchy of