Термоэмиссионный преобразователи энергии — страница 2
газонаполненные ТЭП с парами цезия имеют лучшие показатели. Их характеризуют удельная масса ЭГК G*= 3 SYMBOL 184 f "Symbol" 10 кг/кВт, поверхностная плотность мощности Р*= 100 SYMBOL 184 f "Symbol" 200 кВт/м2 (на единицу площади, эмитирующей электроны), плотность тока эмиттера J = 5 SYMBOL 184 f "Symbol"8 A/cм2, КПД преобразования тепла в электроэнергию SYMBOL 104 f "Symbol" = 0,15 SYMBOL 184 f "Symbol" 0,25, рабочий ресурс - более 104ч (до 5 лет). Вакуумные ТЭП в настоящее время применяются сравнительно мало вследствие сложности технологии изготовления межэлектродных зазоров порядка 10-2мм, при которых возможны удовлетворительные эксплуатационные показатели преобразователей. 2. Физические основы работы термоэмиссионных преобразователей. Работа основана на явлении термоэлектронной эмиссии (эффекте Эдисона) - испускании электронов нагретым металлическим катодом (эмиттером). Физическими аналогами вакуумных и газонаполненных ТЭП могут служить электронные лампы - вакуумные диоды и газотроны. В отдельных случаях вследствие упрощения эксплуатации целесообразно использовать вакуумные ТЭП, но лучшие характеристики имеют, как указывалось, ТЭП, наполненные парами легкоионизирующегося металла - цезия (Сs). Различают межэлектродные газовые промежутки ТЭП с частичной и полной ионизацией. Последние принадлежат к плазменным ТЭП, которые можно относить к контактным преобразователям. Процесс преобразования энергии в ТЭП рассмотрим вначале на примере анализа плоской вакуумной модели элементарного генератора (рис. 1.) Промежуток SYMBOL 68 f "Symbol" между металлическими электродами - катодом (эмиттером) 1 и анодом (коллектором) 2, заключенными в вакуумный сосуд 3, откачан до давления 0,133 мПа (примерно 10-6мм рт. ст.). Электроды и их выводы 4 изолированы от стенок сосуда. К эмиттеру подводится тепловая энергия Q1, и он нагревается до температуры Т1 SYMBOL 187 f "Symbol" 2000К. Коллектор поддерживается при температуре Т2 < Т1 вследствие отвода от него тепловой энергии Q2. Распределение электронов по энергиям в металле электрода зависит от его химической природы и определяется среднестатистическим уровнем Ферми. Это тот (наименьший) уровень, на котором располагались бы все электроны при температуре Т=0. Если Т>0, то вероятность наличия у электрона энергии уровня Ферми всегда равна 0,5. Вплоть до точки плавления металла уровень Ферми мало зависит от Т. Рис. 1. Расчетная электростатическая модель ТЭП 2. Батареи термоэммисионых элементов Вертикальные гирляндные ЭГК образуют батарею ТЭП - электрогенерирующий блок (ЭГБ) реактора. Например, в серийных генераторах "Топас" (СССР)
Похожие работы
- Доклады
- Рефераты
- Рефераты
- Рефераты
- Контрольные