Теория измерений — страница 11

  • Просмотров 472
  • Скачиваний 7
  • Размер файла 38
    Кб

независимые одинаково распределенные случайные величины с функцией распределения H(x), причем выборки Y1, Y2,...,Ym и Z1, Z2,...,Zn независимы между собой и МY1 > MZ1. Для того, чтобы вероятность события стремилась к 1 при для любой строго возрастающей непрерывной функции g, удовлетворяющей условию необходимо и достаточно, чтобы при всех x выполнялось неравенство F(x) <H(x), причем существовало число x0, для которого F(x0) <H(x0). Примечание. Условие

с верхним пределом носит чисто внутриматематический характер. Фактически функция g - произвольное допустимое преобразование в порядковой шкале. Согласно теореме 2 средним арифметическим можно пользоваться и в порядковой шкале, если сравниваются выборки из двух распределений, удовлетворяющих приведенному в теореме неравенству. Проще говоря, одна из функций распределения должна всегда лежать над другой. Функции

распределения не могут пересекаться, им разрешается только касаться друг друга. Это условие выполнено, например, если функции распределения отличаются только сдвигом: F(x) = H(x+b) при некотором b. Последнее условие выполняется, если два значения некоторой величины измеряются с помощью одного и того же средства измерения, у которого распределение погрешностей не меняется при переходе от измерения одного значения рассматриваемой

величины к измерению другого. Средние по Колмогорову Обобщением нескольких из перечисленных выше средних является среднее по Колмогорову. Для чисел X1, X2,...,Xn среднее по Колмогорову вычисляется по формуле G{(F(X1) +F(X2) +... F(Xn)) /n}, где F - строго монотонная функция (т.е. строго возрастающая или строго убывающая), G - функция, обратная к F. Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F(x) = x, то среднее по

Колмогорову - это среднее арифметическое, если F(x) = ln x, то среднее геометрическое, если F(x) = 1/x, то среднее гармоническое, если F(x) = x2, то среднее квадратическое, и т.д. Среднее по Колмогорову - частный случай среднего по Коши. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. В монографии [2] доказаны следующие утверждения. Теорема 3. При справедливости некоторых

внутриматематических условий регулярности в шкале интервалов из всех средних по Колмогорову допустимым является только среднее арифметическое. Таким образом, среднее геометрическое или среднее квадратическое температур (в шкале Цельсия) или расстояний не имеют смысла. В качестве среднего надо применять среднее арифметическое. А также можно использовать медиану или моду. Теорема 4. При справедливости некоторых