Тема 3: весовые функции — страница 6

  • Просмотров 381
  • Скачиваний 5
  • Размер файла 130
    Кб

Гиббса в частотной области. Рассмотрение продолжим с формулы (3.1.2) при усечении произвольного оператора фильтра h(n) прямоугольным селектирующим окном ПN(n). Период осцилляций суммы усеченного ряда Фурье (3.1.2) равен периоду последнего сохраненного либо первого отброшенного члена ряда. С учетом этого фактора осцилляции частотной характеристики могут быть существенно сглажены путем усреднения по длине периода осцилляций в

единицах частоты, т.е. при нормированной свертке с Пr( импульсом, длина которого равна периоду осцилляций r = 2/(N+1). Эта свертка отобразится во временной области умножением коэффициентов фильтра h(n) на множители, которые являются коэффициентами преобразования Фурье частотной П-образной сглаживающей функции Пr(): H'N() = HN() * Пr()  hnN(n) = h(n)ПN(n)N(n), p(n) = ПN(n)N(n) = sinс(n/(N+1)), |n|  N. (3.2.1) Эта операция носит название сглаживания

Ланцоша. Произведение ПN(n)N(n) ≡ N(n) представляет собой новое весовое окно селекции p(n) взамен прямоугольного окна. Функцию N(n) обычно называют временной весовой функцией (окном). Вид и частотная характеристика весового окна Ланцоша в сопоставлении с прямоугольным окном приведены на рис. 3.2.1. Рис. 3.2.1. Весовая функция Ланцоша. Как видно на рисунке, частотная характеристика весовой функции Ланцоша по сравнению с П-образной

функцией имеет почти в 4 раза меньшую амплитуду осцилляций, но при этом ширина главного максимума увеличилась примерно на четверть. Отметим, однако, что если амплитуда осцилляций (в единицах амплитуды главного максимума) определяется выбранным типом весовой функции, то ширина главного максимума, которой определяется ширина переходной зоны (вместо скачка функции) зависит от размеров весового окна и соответственно может

изменяться под поставленные условия (уменьшаться увеличением размера 2N+1 весового окна). Основные весовые функции. В настоящее время известны десятки различных по эффективности весовых функций. В идеальном случае хотелось бы иметь весовую свертывающую функцию с минимальной амплитудой осцилляций, высокую и узкую в главном максимуме, и при этом с минимальными размерами весового окна. В таблицах 3.2.1 и 3.2.2 приведены формулы и

основные спектральные характеристики наиболее распространенных и часто используемых весовых окон. Носители весовых функций, в принципе, являются неограниченными и при использовании в качестве весовых окон действуют только в пределах окна и обнуляются за его пределами (как и в (3.2.1)), что выполняется без дальнейших пояснений. Для упрощения записи формулы приводятся в аналитической, а не в дискретной форме, с временным окном 2,