Тема 3: весовые функции — страница 4

  • Просмотров 380
  • Скачиваний 5
  • Размер файла 130
    Кб

количеством членов (умножением на П-окно, прямоугольную селектирующую функцию) отображается сверткой частотной характеристики функции с частотной характеристикой селектирующей функции (которую часто называют свертывающей функцией). Частотная характеристика прямоугольной функции хорошо известна, как функция отсчетов sin(x)/x, x = (2N+1)/2, и для П-импульса длиной 2N+1 приведена на рис. 3.1.3 (для ряда значений N). Чем больше N, тем уже

центральный пик функции и, соответственно, будет меньше ширина переходной зоны, которая формируется на разрыве вместо скачка функции. Амплитуда самих осцилляций (по номеру от центрального пика) остается без изменений. Свертка этой частотной функции (Фурье-образа селектирующей функции) с частотной характеристикой усекаемых функций и порождает явление Гиббса на резких скачках частотных характеристик. Рис. 3.1.3. Свертывающие

(частотные) весовые функции. Последствия для практики. При расчетах фильтров и усечении размеров их операторов явление Гиббса является весьма нежелательным, т.к. приводит к искажению формы передаточных характеристик фильтров. В качестве примера рассмотрим явление Гиббса применительно к фильтру низких частот. Попытаемся реализовать передаточную функцию фильтра следующего вида: H(f) = 1, при -0.2  f  0.2, = 0, при -0.2 > f > 0.2, в

главном частотном диапазоне от -0.5 до 0.5. Функция четная, коэффициенты ряда Фурье представлены только косинусными членами: an = 4cos(2fn) df = 2 sin(0.4n)/(n). Передаточная функция: H(f) = 0.4 + 2sin(0.4n) cos(2fn)/(n). (3.1.7) Результат усечения ряда Фурье (3.1.7) до N = 7 приведен на рис. 3.1.4. Рис. 3.1.4. Передаточные функции ФНЧ. Как видно на рисунке, явление Гиббса существенно искажает передаточную функцию фильтра. Однако при реализации фильтров ограничение

длины операторов фильтров является правилом их конструирования исходя из чисто практических соображений реализации. Явление Гиббса имеет место при усечении любых числовых массивов. При обработке геофизических данных операция усечения числовых массивов, как одномерных, так и многомерных, относится к числу типовых. Вырезаются из профилей и площадей участки съемки с аномальными данными для их более детальной обработки и

интерпретации. При анализе усекаются корреляционные функции, и соответственно свертываются с частотным образом весового окна вычисляемые спектры мощности, и пр. Во всех этих случаях мы можем столкнуться как с явлением Гиббса, так и с другими последствиями свертки функций в частотной области, в частности с цикличностью свертки, с определенным сглаживанием спектров усекаемых данных, которое может быть и нежелательным