Тема 2: частотный анализ цифровых фильтров

  • Просмотров 492
  • Скачиваний 5
  • Размер файла 179
    Кб

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 2: ЧАСТОТНЫЙ АНАЛИЗ ЦИФРОВЫХ ФИЛЬТРОВ. Не перестаю удивляться дерзкой гениальности Стефенсона и братьев Черепановых. Как они отважились построить паровоз, не располагая теорией его движения? Архив Кифы Васильевича (Наука и жизнь, 1984). Пока нет теории, есть возможность войти в Историю. Бог прославился созданием Евы из ребра Адама без всякого теоретического обоснования. А когда теория есть,

можно только влипнуть в какую-нибудь историю. Лариса Ратушная. Уральский геофизик (XX в.). Содержание: Введение. 2.1. Сглаживающие фильтры и фильтры аппроксимации. Фильтры МНК 1-го порядка. Фильтры МНК 2-го порядка. Фильтры МНК 4-го порядка. 2.2. Разностные операторы. Разностный оператор. Восстановление данных. Аппроксимация производных. 2.3. Интегрирование данных. 2.4. Расчет фильтра по частотной характеристике. Литература. Введение.

Основной инструмент цифровой фильтрации данных и проектирования цифровых фильтров – частотный анализ (второй распространенный термин – спектральный анализ). Частотный анализ базируется на использовании периодических функций, в отличие от численных методов анализа и математической статистики, где предпочтение отдается полиномам. В качестве периодических используются преимущественно гармонические функции – синусы и

косинусы. По-существу, спектральный состав сигналов – это тонкая внутренняя структура данных, которые несет сигнал, и которая практически скрыта в динамическом (графическом) представлении больших множеств данных даже для опытных обработчиков. Точно так же частотная характеристика цифрового фильтра – это его однозначный функциональный паспорт, полностью определяющий сущность преобразования фильтром входных данных. Однако

следует отметить, что хотя сущность фильтрации сигналов состоит именно в направленном изменении частотного состава данных, которые несет сигнал, тем не менее, у начинающих специалистов существует определенное эмоциональное противодействие частотному подходу и его роли в анализе данных. Преодолеть это противодействие можно только одним путем – на опыте убедиться в эффективности частотного подхода. Рассмотрим несколько