Тема 17. Преобразование гильберта то, что не может произойти, никогда не может быть, а если произошло, то не должно нас удивлять — страница 7

  • Просмотров 648
  • Скачиваний 5
  • Размер файла 81
    Кб

совместные чаепития и турпоходы, во время которых математические дискуссии прерывались студенческим трепом обо всем на свете. Для чопорной немецкой профессуры такой стиль общения со студентами был непривычен; но авторитет Гильберта сделал его нормой в Геттингене, а ученики и стажеры разнесли эту норму по всему свету. Гильберт начал свои исследования с алгебры и 5 лет наводил в ней порядок. После первых алгебраических

увлечений интерес Гильберта сместился в две области геометрии: классическую геометрию Евклида и геометрию бесконечномерных пространств, называемую функциональным анализом. За 23 столетия в геометрии Евклида было выявлено достаточно много пробелов. В 1899 году Гильберт предложил новую, логически более совершенную систему из 20 аксиом. Среди векторных пространств Гильберт выделил то, в котором определены расстояние между

точками, угол между векторами и предел последовательности точек. Этот аналог евклидова пространства теперь называют гильбертовым пространством. Успех внушил Гильберту надежду, что в каждой области математики можно ввести полную и строгую систему из необходимых и достаточных определений и аксиом, а вывод всех прочих утверждений можно формализовать. Гильберт сознавал, что эта гипотеза требует тщательной проверки. В качестве

контрольного примера он выбрал знаменитую континуум - гипотезу Кантора из теории множеств. Гильберт попробовал доказать недоказуемость континуум – гипотезы, и это ему удалось. Но когда он попытался доказать ее неопровержимость, то потерпел неудачу. Следовательно, континуум-гипотеза является одной из аксиом теории множеств. Как потом подтвердилось, утверждения вроде континуум-гипотезы найдутся в любой системе аксиом, даже в

системе Евклида - "пятый постулат" о параллельных прямых. Надежда Гильберта на полную формализацию математики не сбылась. Но Гильберт не огорчался. Природа оказывается богаче, и развитие науки никогда не прекратится! В новых и бурно развивающихся ветвях математики - теории множеств, математической логики, теории чисел, алгебраической геометрии, функционального анализа, Гильберт выделил одну-две наиболее трудные проблемы,

такие как континуум-гипотеза и непротиворечивость арифметики, распределение простых чисел и трансцендентность числа е..., классификация непрерывных групп и разрешимость диофантовых уравнений. К концу 20 века все эти задачи либо решены, либо доказана их неразрешимость. Гильберт верно угадал самые перспективные точки развития математической науки. Как-то молодые ученики спросили Гильберта: решение какой задачи было бы сейчас