Тема 15. Регрессия регрессия, это инструмент статистики, на субъективность которого информатики могут сваливать все свои ошибки

  • Просмотров 394
  • Скачиваний 5
  • Размер файла 116
    Кб

2 ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Digital signals processing Тема 15. РЕГРЕССИЯ Регрессия, это инструмент статистики, на субъективность которого информатики могут сваливать все свои ошибки. Фарид Бадрутдинов. Татарин, Уральский геофизик. Электронные мозги могут ошибаться гораздо точнее. Габриэль Лауб. Немец, афорист. Содержание Введение. 1. Постановка задачи регрессии. 2. Линейная регрессия. Общий принцип. Реализация в Mathcad. 3. Полиномиальная

регрессия. Одномерная регрессия. Зональная регрессия. 4. Нелинейная регрессия. Линейное суммирование произвольных функций. Регрессия общего типа. Типовые функции регрессии Mathcad. 5. Сглаживание данных. 6. Предсказание зависимостей. ВВЕДЕНИЕ Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений

процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные. Термин "регрессия" появился при исследовании соотношения роста родителей и их детей, в которых было установлено, что рост

"регрессирует" к среднему, т.е. высокие родители имеют более низких детей, а низкие родители – более высоких. В качестве основной математической системы для примеров будем использовать систему Mathcad. 15.1. постановка задачи регрессии Математическая постановка задачи регрессии заключается в следующем. Зависимость величины (числового значения) определенного свойства случайного процесса или физического явления Y от другого

переменного свойства или параметра Х, которое в общем случае также может относиться к случайной величине, зарегистрирована на множестве точек xk множеством значений yk, при этом в каждой точке зарегистрированные значения yk и xk отображают действительные значения Y(xk) со случайной погрешностью k, распределенной, как правило, по нормальному закону. По совокупности значений yk требуется подобрать такую функцию f(xk, a0, a1, … , an), которой