Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами — страница 7
статистики, но и необходимо в режиме последовательных непрерывных измерений для исключения смещения средних значений. Как следует из теории гамма-каротажа (ГК) и достаточно хорошо подтверждено практикой гамма-опробования, пространственная разрешающая способность гамма-каротажных измерений при интерпретации результатов ГК на содержание естественных радиоактивных элементов в породах по стволу скважин в среднем составляет 10 см, а в скважинах малого диаметра может даже повышаться до 5-7 см. Однако реализация такой разрешающей способности возможна только в условиях достаточно "хорошей" статистики. Коэффициент усиления дисперсии помех цифровых фильтров деконволюции, которые используются при интерпретации ГК, в среднем порядка 12 и изменяется от 4 до 25 в зависимости от плотности пород, диаметра скважин, диаметра скважинных приборов и пр. Отсюда следует, что для достижения разрешающей способности в 10 см при нормативной погрешности дифференциальной интерпретации не более 10-20 % статистическая погрешность измерений не должна превышать 3-7 %. А это, в свою очередь, определяет объем отсчета за единичную экспозицию не менее 200-1000 импульсов. При гамма-каротаже последнее возможно только для пород с относительно высоким содержанием ЕРН (более 0.001 % эквивалентного урана), при использовании детекторов больших размеров (с эффективностью регистрации более 10 имп/сек на 1 мкР/час) и при низкой скорости каротажа (не более 100-300 м/час). В той или иной мере эта проблема характерна для всех методов ядерной геофизики, и особенно остро стоить в спектрометрических модификациях измерений. Вместе с тем следует отметить, что процесс непрерывных измерений имеет определенную физическую базу как для применения методов регуляризации результатов интерпретации данных, так и для регуляризации непосредственно самих статистических данных (массивов отсчетов N) при их обработке. Простейшим способом подготовки цифровых данных для интерпретации является их низкочастотная фильтрация методом наименьших квадратов (МНК) или весовыми функциями (Лапласа-Гаусса, Кайзера-Бесселя и др.). Однако любые методы низкочастотной фильтрации данных снижают пространственную разрешающую способность интерпретации, так как кроме снижения статистических флюктуаций приводят к определенной деформации частотных составляющих полезной части сигнала, спектр которого по условиям деконволюции должен иметь вещественные значения вплоть до частоты Найквиста. В определенной мере ликвидировать этот негативный фактор позволяет метод адаптивной регуляризации данных (АРД). Выражения (11.2.5-6)
Похожие работы
- Рефераты
- Рефераты