Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами — страница 4

  • Просмотров 913
  • Скачиваний 6
  • Размер файла 162
    Кб

коэффициентов фильтра, которые обеспечивают работу в оптимальной точке поверхности адаптации. Однако практическое применение фильтра затрудняется использованием корреляционных матриц R и P, априори неизвестных, и которые могут изменяться со временем для нестационарных сигналов. Адаптивный алгоритм наименьших квадратов Уидроу-Хопфа. По существу, это модификация фильтра Винера, в которой вместо вычисления коэффициентов

(11.1.7) за один шаг используется алгоритм последовательного спуска в оптимальную точку при обработке каждой выборки: Hk+1 = Hk - ek Xk, (11.1.8) ek = yk - HT Xk. (11.1.9) Условие сходимости к оптимуму: 0 <  > 1/max, (11.1.10) где  - параметр скорости спуска, max – максимальное собственное значение ковариационной матрицы данных. Блок-схема алгоритма приведена на рис. 11.1.4. Рис. 11.1.4. Алгоритм адаптации методом наименьших квадратов. На практике точка

максимальной оптимальности флюктуирует около теоретически возможной. Если входной сигнал нестационарный, то изменение статистик сигнала должно происходить достаточно медленно, чтобы коэффициенты фильтра успевали следить за этими изменениями. Рекурсивные схемы наименьших квадратов отличаются тем, что вычисление каждой последующей выборки коэффициентов h(n) производится не только по коэффициентам только одной предыдущей

выборки, но и с определенной длиной постепенно затухающей памяти по предшествующим выборкам, что позволяет снижать флюктуации оценок при обработке стационарных сигналов. 11.2. Основы статистической группировки информации. При построении систем адаптивной фильтрации данных большое значение имеют статистические характеристики обрабатываемых сигналов и шумов, их стационарность, и наличие какой-либо дополнительной информации,

коррелированной с основной. Возможность использования дополнительной информации при построении адаптивных систем рассмотрим на конкретном примере – системе адаптивной фильтрации данных непрерывных ядерногеофизических измерений. Предпосылки метода. Физической величиной, регистрируемой в процессе ядерно-физических измерений в геофизике, обычно является частота импульсных сигналов на выходе детекторов ионизирующего

излучения в интегральном или дифференциальном режиме амплитудной селекции. Значения измеряемой величины, как статистически распределенной по своей природе, могут быть определены только путем усреднения числа актов регистрации ионизирующих частиц по интервалам времени. Зарегистрированное количество импульсов определяет статистическую погрешность единичного измерения, а временной интервал усреднения, обеспечивающий