Tele Education Essay Research Paper 10 INTRODUCTION — страница 9

  • Просмотров 1298
  • Скачиваний 6
  • Размер файла 34
    Кб

following is the Network infrastructure of this system: Figure 8 : Network infrastructure The figure shows that all the network equipment is connected to one Ethernet hub, that is, the hub that acts as a backbone for one Public Network domain and two Customer Premises Networks. In reality, this hub could be partitioned into a number of internets that are inter-connected by routers, also known as the Internet. For the network that is required to operate over six sites in four different countries, would require a much more comprehensive network infrastructure. This infrastructure consisted of an ATM VP service, leased lines, and the internal ATM and IP network infrastructure. The following is the example of this network infrastructure : Figure 9 : Network infrastructure 4.4

Performance of Tele-educational Service 4.4.1 Courses There were two courses, both aimed at students with above average prior knowledge of computing and/or computer networks. The first, an introduction to SQL, was a self-study course, consisting mainly of modules of written text with assessments based on these. The second course, an introduction to ATM, was led by a tutor and involved varied methods of delivery, including lecture/seminar, individual study and group work. Students were therefore expected to interact both with one another and with the tutor. This course, too, included assessment modules. Both of the courses were offered over a three-day period and students were expected to participate for three half days. Within this time, those taking the SQL course was able to

pace their own study. On the ATM course, the students? use of the different resources was timetabled and directed by the tutor. Time was divided between events, such as lectures, at which all students were expected to be present, and study time, during which they would work through a series of modules, with assessment associated with each one. 4.4.2 Students There were 16 students on the more interactive of the two courses, the Introduction to ATM, and a similar number on the self-paced study course, An Introduction to SQL. All the students appeared to be experienced computer users. This has to be accepted as necessary in a trial such as this , which takes place in the context of a research project which uses leading edge technology, some of it is still being tested. The

prototypical nature of parts of the system may make unusual demands on the students, such as imposing unexpected delays. Having students who appreciate the difficulties may well be important. Having said this, it appeared that although they were knowledgeable about computers, these students were not experts in networked multimedia technology, and did need some initial training in the use of the software. This was given prior to the start of the course. The courses were clearly directed at this target group, as their titles suggest. The students also stated that they had a genuine wish to learn the subjects being offered and that this was a major motivating factor. They were also paid for their participation, which may have helped improve their persistence when there were

technical hitches. 4.4.3 System The system used for the ATM course is described here. Those taking the SQL course used only those parts suited to self study. There are three main elements: audio, and video communications channels support a Tele-education system built on a web-browser base, but with considerable functionality added. The audio tool, rat, allows participants to receive and transmit audio, to identify who is speaking, control the volume of incoming and outgoing audio streams. Since this tool was developed as a research platform, there are many extra features which the average end-user is not likely to use in an application such as this one, for example, the facility to change the audio encoding scheme. The tool?s basic functionality is easy to learn and use. The

video tool, vic, also offers functionality suitable for its use as a platform for research into networked video. For the non-expert, however, the most important features are that multiple users can send and receive video simultaneously and that they can control some features of both display and capture/transmission (image size and frame rate are two examples). Video images can be displayed at various sizes from thumbnail image to CIF. Enlarging images does, however, involve creating a new window for each one. Students access the Tele-education system via a web browser and navigate within it using hypertext links, buttons and active areas of images. Initial access is password protected and the system supports the notion of groups and hence, presumably of multiple classes and