Статистический анализ числовых величин (непараметрическая статистика) — страница 9

  • Просмотров 595
  • Скачиваний 7
  • Размер файла 155
    Кб

Так, из Центральной Предельной Теоремы теории вероятностей вытекает, что сумма независимых случайных величин может быть приближена нормальным распределением. Однако более детальный анализ, в частности, с помощью неравенства Берри-Эссеена (см. предыдущий пункт) показывает, что для гарантированного достижения точности необходимо более полутора тысяч слагаемых. Такого количества слагаемых реально, конечно, указать почти

никогда нельзя. Это означает, что при решении практических эконометрических задач теория дает возможность лишь сформулировать гипотезу о виде функции распределения, а проверять ее надо с помощью анализа реальной выборки объема, как показано выше, не менее нескольких тысяч. Таким образом, в большинстве реальных ситуаций определить функцию распределения с точностью невозможно. Итак, показано, что правила отбраковки,

основанные на использовании конкретной функции распределения, являются крайне неустойчивыми к отклонениям от нее распределения элементов выборки, а гарантировать отсутствие подобных отклонений невозможно. Поэтому отбраковка по классическим правилам математической статистики не является научно обоснованной, особенно при больших объемах выборок. Указанные правила целесообразно применять лишь для выявления

"подозрительных" наблюдений, вопрос об отброаковке которых должен решаться из соображений соответствующей предметной области, а не из формально-математических соображений. Выше для простоты изложения рассмотрен лишь случай полностью известного распределения F, для которого изучено правило отбраковки, заданное формулами (1) и (2). Аналогичные выводы о крайней неустойчивости правил отбраковки справедливы, если

"истинное распределение" принадлежит какому-либо параметрическому семейству, например, нормальному, Вейбулла-Гнеденко, гамма. Параметрическим методам отбраковки, основанным на моделях тех или иных параметрических семейств распределений, посвящены тысячи книг и статей. Приходится признать, что они имеют в основном внутриматематический интерес. При обработке реальных данных следует применять устойчивые методы (см.

соответствующую главу), в частности, непараметрические. Пусть исходные данные –это выборка x1, x2, … , xn , где n – объем выборки. Выборочные значения x1, x2, … , xn рассматриваются как реализации независимых одинаково распределенных случайных величин X1, X2, … , Xn с общей функцией распределения F(x) = P (Xi < x), i = 1,2, …, n. Поскольку функция распределения произвольна (с точностью до условий регулярности типа существования моментов), то