Статистический анализ числовых величин (непараметрическая статистика) — страница 6

  • Просмотров 600
  • Скачиваний 7
  • Размер файла 155
    Кб

для других параметрических семейств приводят к аналогичным выводам. Итог можно сформулировать так. Распределения реальных данных практически никогда не входят в какое-либо конкретное параметрическое семейство. Реальные распределения всегда отличаются от тех, что включены в параметрические семейства. Отличия могут быть большие или маленькие, но они всегда есть. Попробуем понять, насколько важны эти различия для проведения

эконометрического анализа. Неустойчивость параметрических методов отбраковки резко выделяющихся результатов наблюдений При обработки реальных экономических данных, полученных в процессе наблюдений, измерений, расчетов, иногда один или несколько результатов наблюдений резко выделяются, т.е. далеко отстоят от основной массы данных. Такие резко выделяющиеся результаты наблюдений часто считают содержащими грубые

погрешности, соответственно называют промахами или выбросами. В рассматриваемых случаях возникает естественная мысль о том, что подобные наблюдения не относятся к изучаемой совокупности, поскольку содержат грубую погрешность, а получены в результате ошибки, промаха. В метрологии об этом явлении говорят так: "Грубые погрешности и промахи возникают из-за ошибок или неправильных действий оператора (его

психо-физиологического состояния, неверного отсчета, ошибок в записях или вычислениях, неправильного включения приборов и т.п.), а также при кратковременных резких изменений проведения измерений (вибрации, поступления холодного воздуха, толчка прибора оператором и т.п.). Если грубые погрешности и промахи обнаруживают в процессе измерений, то результаты, содержащие их, отбрасывают. Однако чаще всего их выявляют только при

окончательной обработке результатов измерений с помощью специальных критериев оценки грубых погрешностей" [7, с.46-47]. Есть два подхода к обработке данных, которые могут быть искажены грубыми погрешностями и промахами: 1) отбраковка резко выделяющихся результатов наблюдений, т.е. обнаружение наблюдений, искаженных грубыми погрешностями и промахами, и исключение их из дальнейшей статистической обработки; 2) применение

устойчивых (робастных) методов обработки данных, На результаты работы которых мало влияет наличие небольшого числа грубо искаженных наблюдений (см. ниже соответствующую главу). В настоящем пункте обсуждаются методы отбраковки. Наиболее изучена ситуация, когда результаты наблюдений - числа x1., x2.,…, xn., резко выделяется один результат наблюдения, для определенности, максимальный xmax . Простейшая вероятностно-статистическая