Статистический анализ числовых величин (непараметрическая статистика) — страница 12

  • Просмотров 619
  • Скачиваний 7
  • Размер файла 155
    Кб

необходимые и достаточные условия наследования сходимости, полученные в монографии [11, п.2.4]. Именно таким образом были получены приведенные выше результаты для выборочного коэффициента вариации. Формулы оказались существенно более сложными, чем в предыдущих случаях. Это объясняется тем, что выборочный коэффициент вариации - функция двух выборочных моментов, а ранее рассматривались либо выборочные моменты поодиночке, либо

функция от одного выборочного момента - выборочной дисперсии. О проверке однородности двух независимых выборок Противоположным понятием является «различие». Можно переформулировать задачу: требуется проверить, есть ли различие между выборками. Если различия нет, то для дальнейшего изучения часто выборки объединяют. Например, в маркетинге важно выделить сегменты потребительского рынка. Если установлена однородность двух

выборок, то возможно объединение сегментов, из которых они взяты, в один. В дальнейшем это позволит осуществлять по отношению к ним одинаковую маркетинговую политику (проводить одни и те же рекламные мероприятия и т.п.). Если же установлено различие, то поведение потребителей в двух сегментах различно, объединять эти сегменты нельзя, и могут понадобиться различные маркетинговые стратегии, своя для каждого из этих сегментов.

Традиционный метод проверки однородности (критерий Стьюдента). Для дальнейшего критического разбора опишем традиционный статистический метод проверки однородности. Вычисляют средние арифметические в каждой выборке , затем выборочные дисперсии , и статистику Стьюдента t, на основе которой принимают решение, . (1) По заданному уровню значимости  и числу степеней свободы (m+n _ 2) из таблиц распределения Стьюдента находят

критическое значение tкр. Если |t|>tкр, то гипотезу однородности (отсутствия различия) отклоняют, если же |t|<tкр, то принимают. (При односторонних альтернативных гипотезах вместо условия |t|>tкр проверяют, что t>tкр; эту постановку рассматривать не будем, так как в ней нет принципиальных отличий от обсуждаемой здесь.) Рассмотрим условия применимости традиционного метода проверки однородности, основанного на использовании

статистики t Стьюдента, а также укажем более современные методы. Вероятностная модель порождения данных. Для обоснованного применения эконометрических методов необходимо прежде всего построить и обосновать вероятностную модель порождения данных. При проверке однородности двух выборок общепринята модель, в которой x1, x2,...,xm рассматриваются как результаты m независимых наблюдений некоторой случайной величины Х с функцией