Статистические величины — страница 6

  • Просмотров 4429
  • Скачиваний 354
  • Размер файла 60
    Кб

алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической (согласно нулевому свойству) всегда равна нулю, то для расчета среднего линейного отклонения используется арифметическая сумма отклонений, т.е. суммируются абсолютные значения индивидуальных отклонений значений признака независимо от знака. Среднее линейное отклонение для несгруппированных данных для сгруппированных данных

(вариационного ряда) Дисперсия Дисперсия рассчитывается по следующим формулам: для несгруппированных данных для сгруппированных данных (вариационного ряда) Дисперсия имеет большое значение в статистическом анализе. Однако её применение как меры вариации в ряде случаев бывает не совсем удобным, потому что размерность дисперсии равна квадрату размерности изучаемого признака. В таких случаях для измерения вариации признака

вычисляют среднее квадратическое отклонение. Среднее квадратическое отклонение для несгруппированных данных для вариационного ряда Дисперсия и среднее квадратическое отклонение недостаточно полно характеризуют колеблемость признака, т.к. показывают абсолютный размер отклонений, что затрудняет сравнение изменчивости различных признаков. Для характеристики колеблемости явлений среднее квадратическое отклонение

сопоставляется с его средней величиной и выражают в процентах. Такой показатель называется коэффициентом вариации. Коэффициент вариации рассчитывается по формуле: Коэффициент вариации представляет собой отношение среднего квадратического отклонения к средней арифметической. Выражая коэффициент вариации в процентах, различные абсолютные среднеквадратические отклонения приводят к одному основанию и дают возможность

сравнивать, оценивать колеблемость величин различных признаков. При помощи коэффициента вариации возможно, например, сравнение размера колеблемости производительности труда рабочих, занятых производством различных видов продукции, размера колеблемости урожаев различных сельскохозяйственных культур и т.д. Чем меньше коэффициент вариации, тем меньше колеблемость признака, и наоборот. Относительное линейное отклонение

определяется как отношение среднего линейного отклонения к средней арифметической в процентах: Отношение размаха вариации к средней арифметической в процентах называется коэффициентом осцилляции: Самым распространенным относительным показателем колеблемости признака является коэффициент вариации. Он более точно, чем абсолютный, характеризует различие колеблемости признаков. По величине коэффициента вариации можно