Статистические величины — страница 3

  • Просмотров 4426
  • Скачиваний 354
  • Размер файла 60
    Кб

просто суммирование f раз одного и того же значения признака (варианта) заменено в ней умножением варианта на f. При этом величина средней зависит уже не только от величины индивидуальных значений признака (как в простой средней арифметической), но и от соотношения их весов (частот). Чем большие веса имеют малые значения вариантов, тем меньше величина средней и наоборот. Вычисление средней арифметической интервального ряда.

Вариационные ряды получаются в результате группировок, причем часто группировочные признаки показаны не одной величиной, а в определенных интервалах. Такие ряды называются интервальные. Вычисление средней из интервального ряда имеет некоторые особенности. Для того, чтобы рассчитать среднюю арифметическую интервального ряда, надо сначала определить среднюю для каждого интервала, а затем - среднюю для всего ряда. Средняя для

каждого интервала определяется как полусумма верхней и нижней границ, т.е. по формуле средней арифметической простой. Определение варианты как полусуммы верхней и нижней границ интервального ряда исходит из предположения, что индивидуальные значения признака внутри интервала распределяются равномерно и, следовательно, средние значения интервалов достаточно близко примыкают к средней арифметической в каждой группе. В

действительности это не всегда так, поэтому средние, вычисленные из интервальных рядов, являются приблизительными. Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые определяют ее широкое применение в экономических расчетах и в практике статистического исследования. Свойство 1. Средняя арифметическая постоянной величины равна этой постоянной: Свойство 2 (нулевое).

Алгебраическая сумма линейных отклонений (разностей) индивидуальных значений признака от средней арифметической равна нулю: i - линейные (индивидуальные) отклонения от средней, т.е. xi - Это свойство можно сформулировать следующим образом: сумма положительных отклонений от средней равна сумме отрицательных отклонений. Логически оно означает, что все отклонения от средней в ту и в другую сторону, обусловленные случайными

причинами, взаимно погашаются. Свойство 3 (минимальное). Сумма квадратов отклонений индивидуальных значений признака от средней арифметической есть число минимальное: что означает: сумма квадратов отклонений индивидуальных значений признака каждой единицы совокупности от средней арифметической всегда меньше суммы квадратов отклонений вариантов признака от любого значения (А), сколь угодно мало отличающегося от средней у