Статистические гипотезы — страница 6

  • Просмотров 1153
  • Скачиваний 13
  • Размер файла 228
    Кб

характеризует количество степеней свободы. Плотность распределения – унимодальная и симметричная функция, похожая на нормальное распределение, рис. 1.7. Рис. 1.7. Плотность распределения Стьюдента Область изменения аргумента t от минус до плюс бесконечности. Математическое ожидание и дисперсия равны 0 и k/(k–2) соответственно, при k>2. По сравнению с нормальным распределение Стьюдента более пологое, оно имеет меньшую дисперсию.

Это отличие заметно при небольших значениях k, что следует учитывать при проверке статистических гипотез (критические значения аргумента распределения Стьюдента превышают аналогичные показатели нормального распределения). Таблицы распределения содержат значения для односторонней (пределы интегрирования от r(k; a ) до бесконечности) или двусторонней (пределы интегрирования от – r(k; a) до r(k; a)) критической области. Распределение

Стьюдента применяется для описания ошибок выборки при k<30. При k, превышающем 100, данное распределение практически соответствует нормальному, для значений k из диапазона от 30 до 100 различия между распределением Стьюдента и нормальным распределением составляют несколько процентов. Поэтому относительно оценки ошибок малыми считаются выборки объемом не более 30 единиц, большими – объемом более 100 единиц. При аппроксимации

распределения Стьюдента нормальным распределением для односторонней критической области вероятность Р{t>t(k; a)} = u1–a(0, k /(k–2)), где u1–a(0, k/(k–2)) – квантиль нормального распределения. Аналогичное соотношение можно составить и для двусторонней критической области. Распределение Фишера Распределению Р.А. Фишера (F-распределению Фишера – Снедекора) подчиняется случайная величина х=[(y1/k1)/(y2/k2)], равная отношению двух случайных

величин у1 и у2, имеющих хи-квадрат распределение с k1 и k2 степенями свободы. Область изменения аргумента х от 0 до бесконечности. Плотность распределения . В этом выражении k1 обозначает число степеней свободы величины y1 с большей дисперсией, k2 – число степеней свободы величины y2 с меньшей дисперсией. Плотность распределения – унимодальная, несимметричная, рис. 1.8. Рис. 1.8. Плотность распределения Фишера Математическое ожидание

случайной величины х m1 = k2 /(k2–2) при k2>2, дисперсия т2 = [2k22(k1 + k2 –2)]/[k1(k2 –2)2(k2–4)] при k 2 > 4. При k1>30 и k2>30 величина х распределена приближенно нормально: с центром распределения (k1–k2)/(2k1k2) и дисперсией (k1+k2)/(2k1k2). Проверка гипотез о законе распределения Обычно сущность проверки гипотезы о законе распределения ЭД заключается в следующем. Имеется выборка ЭД фиксированного объема, выбран или известен вид закона распределения