Статистическая физика и термодинамика — страница 6

  • Просмотров 2932
  • Скачиваний 427
  • Размер файла 80
    Кб

зависит от температуры, объёма и других параметров, характеризующих состояние тела, т.е. при   (где ). Этот результат, являющийся обобщение ряда опытных данных и не вытекающий непосредственно из первого или второго начала термодинамики, составляет содержание тепловой теоремы Нернста. Из тепловой теоремы следует, что вблизи абсолютного нуля теплоёмкости  и , равные соответственно T  и T , вследствие равенства нулю при

 производных и  обращаются в нуль; вообще при T =0 равняется нулю теплоёмкость любого процесса . Точно так же при обращается в нуль и производная  (а следовательно, и коэффициент теплового расширения), равная согласно выражению производной В каком бы состоянии – жидком или твёрдым, в виде чистого вещества или химического соединения – ни существовало вещество, энтропия его согласно тепловой теореме при имеет одно и то

же значение (если, конечно вещество в каждом из этих состояний находится в термодинамическом равновесии) так, например, при  энтропии любого вещества в жидком и твёрдом состояниях будут равны, а энтропия смеси, состоящей из 1 кмоль вещества A и 1кмоль вещества B, будет равна энтропии 1 кмоль их химического соединения A и B. Постоянство энтропии при означает, что в области абсолютного нуля  всегда равняется нулю, т.е. любая из

изотерм совпадает с адиабатой . Таким образом, вся изотермическая система при ведёт себя как адиабатическая система и может совершать работу только за счёт своей внутренней энергии, не поглощая теплоты от окружающих тел и не отдавая теплоты им, и. наоборот, всякая адиабатическая система не отличается в этой области от изотермической. Из последнего следует, что путём адиабатического расширения тела достигнуть абсолютного нуля

невозможно. Равным образом нельзя достигнуть абсолютного нуля и с помощью отвода теплоты от тела, поскольку при каждое из тел при любом процессе изменения состояния сохраняет неизменное значение энтропии, т.е. перестаёт отдавать теплоту  окружающей среде. Планк пришёл к выводу, что при температуре абсолютного нуля энтропия всех веществ в состоянии равновесия независимо от давления, плотности и фазы обращается в нуль,

т.е.   . Это утверждение составляет содержание третьего начала термодинамики. Газы, находящиеся под неисчезающими малыми давлениями, конденсируются при температурах, значительно больших по сравнению с , и только при очень малых давлениях достигают температур, близких к . По этому третье начало термодинамики относится в основном к конденсированным системам, т.е к твёрдым и жидким телам (из всех веществ только гелий2