Симметрия в физике — страница 9

  • Просмотров 5619
  • Скачиваний 425
  • Размер файла 49
    Кб

пространстве. 8. Симметрия физических явлений. Кроме симметрии пространства – времени существует еще множество других симметрий, управляющих физическими явлениями, определяющих свойства элементарных частиц и их взаимодействий. Мы увидим, что каждой симметрии обязательно соответствует свой закон сохранения, который выполняется с такой же точностью, как и сама симметрия. Когда в 30-х годах изучался радиоактивный распад,

оказалось, что энергия вылетающих при распаде электронов меньше разности энергий ядер до и после распада. Физики предположили, что вместе с электронами вылетает нейтральная частица – нейтрино, унося излишек энергии. Существование нейтрино было затем доказано на опыте по его непосредственному действию на вещество. Энергия сохраняется с той же точностью, с какой соблюдается однородность времени. И так, каждой симметрии

соответствует свой закон сохранения. И наоборот, когда какая-либо величина остается неизменной, значит существует симметрия, обеспечивающая сохранение этой величины. Неудивительно, что законы сохранения энергии, импульса, углового момента соблюдаются во всех явлениях природы, они есть следствие такого свойства нашего мира, как симметрия пространства и времени. 9. Нарушение зеркальной симметрии. Оказалось, что заряженный

К-мезон распадается двумя способами: на два или три пи-мезона, а зеркальная симметрия запрещает ему распадаться обоими способами. Зеркальная симметрия связана с законом сохранения – сохраняется величина, которая называется четностью. Что это такое? Свойства частиц не должны изменятся при зеркальном отражении, но волновая функция может изменить знак. Когда она не изменяет знака, состояние называется четным, а когда изменяет –

нечетным. Значит, если существует зеркальная симметрия, каждая частица имеет определенную четность. Примерно в то же время американские физики изучали В-распад кобальта, при котором из ядер вылетаю электроны антинейтрино. Оказалось, что электроны вылетают преимущественно под тупыми углами к направлению магнитного поля, в которое был помещен кобальт. По закону зеркальной симметрии они должны были одинаково часто вылетать, как

под тупыми углами, так и под острыми. Смятение физиков было таково, что они усомнились и в других свойствах симметрии пространства. Тогда Лев Давыдович Ландау и независимо Ли Цзундао и Янг Чтельнин предположили, что участвующие в В-распаде электроны, нейтрино, нуклоны зеркально асимметричны и, чтобы восстановить симметрию, нужно перейти к античастицам. Казалось, что выход найден – асимметрия вылета объяснялась асимметрией