Шпаргалки по высшей математике (1 курс)

  • Просмотров 9728
  • Скачиваний 616
  • Размер файла 30
    Кб

Основные понятия мат анализа. Матем-наука о простых формах и количеств отношений окружающего нас мира. Переменой величиной наз величина d ринимает различн числовые значения. величина значения d не меняется наз постоянной величиной. Совокупность всех числовых значений переменой величины наз областью изменения этой переменной. Окрестность Ÿ х0 наз производный интервал (a;b) содержащий эту Ÿ. If каждому значению переменной х

э неd области соответствует 1 определенное значение др переменой у, то у есть f(х)=у. способы задания f. 1)таблица 2)графический совокупность Ÿ M(х;у) не лежащих на прямой // оу, определяет зависимость у=f(х) 3)аналитический. Аналитическим выражением наз символическое обознач совокупности известных матем операций d производятся в определ последовательности над числами и буквами обозначающиеем постоянные и переменные величины. if f

зависимость у=f(х) такова, что f обозначается аналитич выражением, то f задана аналитически. F f(х) наз периодической if $ t: "х f(х+t)=f(x). Четная, нечетная, монотонная f. Элементарные f. 1)постоянная у=с, с-действительное число; 2)степенная у=х^а, а-д.ч. 3)показательная у= f^х a>x a≠1 4)логорифмическая у=loga x a>x a≠1, 5)тригонометрические 6)обратные тригонометрические. Предел функции. (Коши) число а наз lim f f(х) в Ÿ х0б if для " Е>0 $ б>0, такое

что для всех х0 х э Ω, х ≠ 0 и удовлетвор |х-х0|<б верно |f(х)-А|<Е. (Гейне) число А наз lim f f(х), if " последовательности хn (хnÎW, хn­­­­­¹х0), сходящейся к · х0, соответствующая последовательность значений f сходится к числу А. Оба определения эквивалентна, т.е. if f f(х) имеет предел А в смысле определения I, то она имеет тот же предел А в смысле определения II, и наоборот. Замечание. if f(х)èв при хèа, так что х<а, то lim f(х)=в (хèа-0).

Опр. If lim спр or сл =, то это будет lim в смысле данного выше опр. Для сущ lim f приемного отделения хèа не требуется чтобы f была опр в Ÿ а. БМВ. F α(х) наз бмс хèа if α(х)=0 if для "Е $ б: |x-α|<бè |α(х)|<Е. св-ва 1) if α(х) и β(х)-бм f при хèх0, то их Σ α(х)+β(х) и произвед=бм f при хèх0 2)f(х)-ограниченая f α(х)*β(х)=бм f при хèх0 3)α(х)-бм при хèх0, f(х) имеет в Ÿ х0 конечный предел, lim f(х)=А, то f α(х)*f(х) и α(х)/f(х)=бм