Шпаргалки по математическому анализу для 1-го семестра в МАИ — страница 3

  • Просмотров 9525
  • Скачиваний 634
  • Размер файла 94
    Кб

f(x) имеет limx®a, то он единственный. {Д} Предположим обратное пусть limx®af(x)=A limx®af(x)=B выберем окрестности точек А и В так, чтобы они не пересекались U(A;e); U(B;e), тогда для данного e 1) $d=d(e)>0 | при "x 0<|x-a|<d Þ |f(x)-A|<e Þ f(x)ÎU(A;e) 2) $d2=d2(e)>0 | при "x 0<|x-a|<d2 Þ |f(x)-B|<e Þ f(x)ÎU(B;e) Пусть d0=max(d1,d2), тогда при "х уд. 0<|x-a|<d0 вып. f(x)ÎU(A;E), f(x)ÎU(B;E) Þ Эти две окрестности пересекаются, что противоречит выбору этих окрестностей т.о. А=В

Ч.т.д.{Теорема об орграниченности на нек окрестности (.)а f(x)} Если при x®a f(x) имеет конеч lim=A , то она ограничена в некоторой окрестности точки а.{Док-во} Т.к. $limx®af(x)=A, то для e=1 $d>0 | при "x 0<|x-a|<d вып. |f(x)-A|<1 Þ |f(x)|=|f(x)-A+A|£|f(x)-A|<|f(x)-A|+|A|<1+|A| при "х уд 0<|x-a|<d -это означает что f(x) ограничена (.)а {ББ и БМ ф-ции}{О} Ф-ция f(x) называется БМ х®а если limx®af(x)=0 {o} ф-ция ББ если limx®af(x)=+(-)¥ {T} Если f(x) бб при х®а, то 1/f(x) бм при х®а. Если f(x) бм при

х®а и она отлична от 0 в некоторой окрестности (.) a, то 1/f(x) – бб при х®а {Док} Возьмём E>0 Þ $d=d(E) >0 | при "x уд. 0<|x-a|<d Þ |f(x)|>1/E Þ 1/f(x)<E при "x уд 0<|x-a|<d Þ 1/f(x) бм при x®a Пусть f(x) – бм при x®a и $ d1>0 | "x, уд. 0<|x-a|<d1 Þf(x)¹0 возьмём E{бол}>0 тогда $ d2>0 | при 0<|x-a|<d2 |f(x)|<1/E{бол}, пусть d=min(d,d2)Þ при "x , 0<|x-a|<d вып-ся f(x)¹0, |f(x)|<1/E Þ 1/f(x)>E Þ 1/f(x) –бб при х®а {T} Сумма двух б.м при x®a есть бм при x®a {Д} Пусть limx®af1(x)=0

limx®af2(x)=0 "e>0, тогда $d1=d1(e)>0 | при "х 0<|x-a|<d1 Þ |f1(x)|<e/2 $ d2=d2(e)>0 | при "x, 0<|x-a|<d2Þ |f2(x)|<e/2 Пусть d=min(d1,d2) Þ "x 0<|x-a|<d Þ |f1(x)+f2(x)|<=|f1(x)|+|f2(x)|=e/2+e/2=e Þ limx®a(f1(x)+f2(x))=0 {T}Произведение бм при x®a на ф-цию ограниченную в некоторой окрестности есть бм при x®a {Док} Пусть limx®ag(x)=0, а ф-ция g(x) ограничена в U(m,d1) т.е. $ m>0 | "х ÎU(a,d1)Þ |g(x)|<m "e>0 Þ $ d2>0 | при "x, 0<|x-a|<d2 Þ |g(x)|<e/m ; Пусть d=min(d1,d2) Þ "x, 0<|x-a|<d Þ

|f(x)g(x)|=|f(x)|×|g(x)|<em/m=e Þ limx®af(x)g(x)=0 #6 {Т о связи ф-ии и ее пределов.}Для того чтобы А было lim ф-ии f(x) при х®а А=lim(a®¥)f(x) Û f(x)=A+j(x) ;Где j(x) – б м ф-ия при х®а {док-во} Пусть А=lim(х®а) f(x) предположим ; j(x)=f(x)-A и докажем что j(x)-б м ф при х®а. Возьмем " e>0 $ d завис от e такое что d(e)>0 такое что "х, 0</x-a/<d => /f(x)-A/<e => /j(x)/=/f(x)-A/<e таким образом j(x) – бмф при х®а пусть f(x)= j(x)+A где j(x) – бмф при х®а тогда при " e>0 $ d>0 такая что "х удв

0</x-a/<d выполняется /j(x)/< e => /f(x)-A/=/j(x)/ <e => lim(х®а)f(x)=A {Арифмитические операции над пределами ф-ций Т }пусть сущ предел f1(x) при х®а =А и сущ lim(х®а)f2(x)=B 1)сущ lim(f1(x)+f2(x))=A+B 2) сущ lim(f1(x)*f2(x))=AB 3) сущ lim(f1(x)/f2(x))=A/B при В¹0 ; 1-e св-во тк lim(х®а)f1(x)=A и lim(х®а)f2(x)=B => f1(x)=A+j1(x) f2(x)=B+j2(x) где j1j2 бм ф-ии при х®а тогда f1(x)+f2(x)=A+B+j1j2= A+B+j(x)== где j(х) бмф т.к. сумма 2х бм ==lim(х®а)(f1(x)+f2(x))=A+B {предельный переход в неравенство} пусть lim(х®а)f1(x)=b1 lim(х®а)f2(x)=b2 и b1<b2 тогда $ U(a,d)