Шпаргалки по математическому анализу для 1-го семестра в МАИ — страница 2

  • Просмотров 6286
  • Скачиваний 627
  • Размер файла 94
    Кб

граф чертеже эти точки тогда данное нер-во означ что все члены послед начиная с нек номера попадают в интервал (А-e;А+e). Если {Хn} имеет предел то он единственный {Док-во} предп обратное lim(n®¥)xn=a lim(n®¥)xn=b a<b a<r<b Þ для e1=r-a>0 $n1 при n>n1 /xn-a/<e1=r-a Þ a-r <xn-a<r-a Þ xn<r при n>n1 для e2=b-r>0 $ n2 такое что при n>n2 /xn-b/<e2=b-r Þ r-b<xn-b<b-c => xn>r при n>n2 пусть no=max(n1,n2)=> при n>no xn>r xn<r что невозм. => a=b Теор док.{Т} Сходящаяся

последовательность ограничена. {Док} Пусть последовательность аN сходится к числу а. Возьмем какое-либо эпсилон, вне эпсилон-окрестности точки а лежит конечное число членов последо вательности, значит всегда можно раздвинуть окрестность так, чтобы все члены последовательности в нее попали, а это и означает что последователь ность ограничена. #4послед {xn} назыв б м п если lim(n®¥)xn=0 послед {xn} назыв б б п если она имеет своим

пределом бесконечнось. Если {xn} ббп то 1/{xn} бмп Док-во т.к {xn} ббп => "e>0 $ne=n(e) такое что при n>ne вып неравенство /xn/>1/e => 1//xn/<e при n>ne = lim(n®¥) 1/xn=0 {T}произвед беск малой на огранич есть бмп {док-во} пусть {xn}- бмп а {уn}- огранич => $M>0 такое что /уn/<M при " n пусть e>0 тогда тк {xn}- бмп =>$ne=n(e) при n>ne /Xn/<e/M => при n>ne /xnyn/=/xn/yn<(e/M)*M=e => lim(n®¥)(xnyn)=0 чтд {Т} Если $n0: "n>n0 aN£bN£cN и $ Lim aN=a, $ Lim cN=c, причем a=c, то $ Lim bN=b => a=b=c. {Док}

Возьмем произвольно Е>0, тогда $ n’: "n>n’ => cN<(a+E) & $ n”: "n>n” => (a-E)<aN. При n>max{n0,n’,n”} (a-E)<aN£bN£cN<(a+E), т.е. " n>max{n0,n’,n”}=>bNÎ(a-E,a+E) {Т переход от к пределу в неравенствах} Если Lim xN=x, Lim yN=y, $n0: "n>n0 хN£yN, тогда x£y {Док-во} (от противного): Пусть х>у => по определению предела $ n0’: "n>n0’ |хN-х|<E(берем Е<|х-у|/2): & $ n0”: "n>n0” |yN-y|<E. "n>max{n0’, n0”}: |хN-х|<|х-у|/2 & |уN-у|<|х-у|/2, т.е. получаем 2 интервала

(у-Е,у+Е) & (х-Е,х+Е)], причем (у-Е,у+Е)Ç(х-Е,х+Е)=Æ. "n>max{n0’, n0”} хNÎ(х-Е,х+Е) & уNÎ(у-Е,у+Е) учитывая, что х>у получаем: "n>max{n0’, n0”} хN>yN - противоречие с условием. #5 {О предела ф-ции} Пусть f(x) определенна в некоторой окрестности т. «а» за исключунием быть может самой этой точки а. Число А – называется пределом ф-ции при x®a если "E>0 $ d=d(E)>0 : "x 0<|x-a|<d вып. |f(x)-A|<E {O limx®af(x)=¥} Если "E{бол}>0 $ d=d(E)>0 | "x 0<|x-a|<d Þ

|f(x)|<E Þ limx®af(x)=¥ {O limx®af(x)=+¥} Если "E>0 $ d=d(E)>0 : "x 0<|x-a|<d вып f(x)>E {O limx®af(x)=-¥} Если "E>0 $ d=d(E)>0 : "x 0<|x-a|<d вып f(x)<-E {O limx®¥f(x)=A} Если "e>0 $ D=D(e)>0 : "x |x|>D вып |f(x)-A|<e {O limx®¥f(x)=¥} Если "E{бол}>0 $ D=D(E)>0 : "x |x|>D вып |f(x)|>E {Односторонние пределы} Правым (левым) пределом ф-ции f(x) ghb x®a+0(-0) называется число А / "e>0 $d=d(e)>0 при "x a(-d)<x<a(+d) Þ |f(x)-A|<e A=limx®a+0(-0)f(x){Теорема о единственности предела} Если ф-ция