Шпаргалки по математическому анализу для 1-го семестра в МАИ — страница 14

  • Просмотров 6809
  • Скачиваний 628
  • Размер файла 94
    Кб

xÎU(x0,d) f(x)>=f(x0) или f(x)<=f(x0) т.е. в (.) x0 ф-ция y=f(x) принимает наибольшее или наименьшее значение в окр.U(x0,d)Þ по теорме Ферма произв если она сущ то =0 {Т} Достаточное условие экстремума: Пусть ф-ция y=f(x) дифференцируема в некоторой окресности (.) x0 за исключением быть может самой точки х0 в которой она непрерывна. Тогда если при переходе через точку х0 производная ф-ции меняет знак (т.е. $ d>=0 | " xÎ(x0,x0+d] f’(x)<0 (or f’(x)>0), а "

xÎ(x0-d,x0] f’(x)<0 (or f”(x)>0) то х0 является экстремумом при этом для xÎ(d,x0+d); f’(x)>0,a для xÎ(x0-d,x0) f’(x)<0 то x0 –макс , а для xÎ(x0-d,x0) f’(x)<0, а для xÎ(x0,x0+d) f’(x)>0 то xo-мин. {До} Пусть для xÎ(x0-d,x0) f’(x)>0 для xÎ(x0,x0+d) f”(x)<0. По теореме Лагранжа Df=f(x)-f(x0)=f’(x)(x-x0) x между х0 и х Если х>x0 Þ x-x0>0 x0<x<x , f’(x)<0ÞDf<0. Если х<x0 Þ x-x0<0, x<x<x0, f’(x)>0ÞDf>0 Þ f(x)<f(x0) x0-макс x-min –аналогично #38 Пусть y=f(x) определена и непрерывна на

промежутке Х ф-ции называется выпуклой (вогнутой) если "x1,x2 ÎX выполняется нер-во f(q1x1+q2x2)<=q1f(x1)+q2f(x2) (f(q1x1+q2x2)>=q1f(x1)+q2f(x2)), где " q1>0,q2>0, q1+q2=1 Геом интопрет: x=q1x1+q2x2 (x1<x2) q1>0,q2>0, q1+q2=1 тогда т.х лежит между точками х1 и х2{Док-во} (x-x1=q1x1+q2x2-x2=x1(q1-1)+q2x2=-x1q2+q2x2=q2(x2-x1)>0Þx>x1Þx2-x=x2-q1x1-q2x2=x(1-q2)-q1x1=x2q1-q1x1=q2(x2-x1)>0Þx1<x<x2{Зам}y=f(x)-выпккла(вогнута) тогда для "х q1x1+q2x2 q1=(x2-x)/(x2-x1); q1=(x-x1)/(x2-x1) выполнено неравенство (f(x)-f(x1))/(x-x1)<=(>=)(f(x2)-f(x))/x2-x1) (1)

{Т1} Пусть ф f(x) опред. и непрерыв. на пром. Х и имеет на этом пром. кон . произв. Для того чтобы выпукла(вогнута) Û f’(x)- возратала(убывала) на Х {Док-во} Пусть ф-ция выпукла на Х и х1<х<х2 Тогда вып нер-во (1) переходя в этом нер-ве к пределу х®х1 или х®х2 получим f’(x1)<=(f(x2)-f(x1))/(x2-x1) x®x1 (f(x2)-f(x1))/(x2-x1)<=f’(x2) x®x1 Þf’(x)<=f’(x2)Þ производная возрастает {Обр} Пусть произв. возрост. то по теор Лагранжа (f(x2)-f(x1))/(x2-x1)=f’(x) Причём т.к. (f’(x1)<=f’(x2)

Þ выполнено нер-во 1 Þ ф-ция выпукла. {Т} Пусть ф-ция y=f(x) определена и непрерывна вместе со своей производной на промежутке (Х) и имеет на этом промежутке конечную вторую производную, для того чтобы ф-ция была выпуклой ( вогнутой) на X необходимо и достаточно, чтобы на этом промежутке выполнялось нер-во f’’(x)>=0 (f’’(x)<=0) {Док} f-выпуклая(вогнутая) Û f’ – возрастает(убывает) Û f’’<=0 (f’’>=0) {(.) перегиба} Пусть y=f(x)

–дифференцируема в (.) x0 и y=e(x)-ур-ние касательной к графику ф-ции у=f(x) в (.) х0. Если при переходе через (.) х0 выражение f(x)-e(x)- меняет свой знак то (.) х0 называется точкой перегиба. {T}Достаточное условие точки перегиба. Если х0 является точкой перегиба ф-ции f(x) и вэтой точке существует вторая производная, то она равна 0 {Д} Уравнение касательной к графику ф-ции y=f(x) в т. х0 имеет вид L(x)=f(x0)+f’(x0)(x-x0) Разложим ф-цию f(x) в окр. т. х0 по Тейлору с