Шпаргалки к экзамену по динамике подземных вод

  • Просмотров 1212
  • Скачиваний 49
  • Размер файла 20
    Кб

1. Уравнение неразрывности массы жидкости. Для вывода ур-я неразрывности выделим в напорном водоносном пласте кубик dx, dy, dz. Ч-з заднюю грань вытекает масса жидкости = ρVxdydzdt = M'. V дв-я (массовая) выражается: d(ρVx)/dx. На уч-ке dx массовая V получ приращение [d(ρVx)/dx*dx]dydxdt. dx – расстояние. M'' = ρVxdydzdt + [d(ρVx)/dx*dx]dydxdt = [ρVx + d(ρVx)/dx*dx] dydxdt. Разница между массами жидк, втек и вытек ч/з заданые границы: M' – M'' = ρVxdydzdt - [ρVx + d(ρVx)/dx*dx] dydxdt = - d(ρVx)/dx*dxdydxdt Проводя

аналог вычесл по yz, получим ΔМ — разница массы жидк, вошедшей и вышедш со всех сторон = ΔМ' = (- d(ρVx)/dx - d(ρVy)/dy - d(ρVz)/dz)dxdydxdt; ΔМ либо накапл в кубике, либо получается за счет уменьш запасов воды в нем. Упругие запасы = ΔМ'' = ρndxdydzdt, а скорость их изм во t опр-ся частной произв-й d(ΔМ)/dt = d(ρn)/dt*dxdydxdt. Приравнивая ΔМ' = ΔМ'' = (- d(ρVx)/dx - d(ρVy)/dy – d(ρVz)/dz)dxdydxdt = d(ρn)/dt*dxdydxdt + d(ρVx)/dx + d(ρVy)/dy + d(ρVz)/dz – d(ρn)/dt = 0 – конечное уравнение неразр массы жидкости. Перечисл

выводы могут быть повторены для расчетного эл-та изолир-го напорного пласта мощн m. При этом xy лежат в пл-ти напластования. Расходы жидк ч/з верх и нижн грань z = 0 (изолир пл-т). Ур-е неразрывности: d(ρmVx)/dx + d(ρmVy)/dy + d(ρmn)/dt = 0 Осн закон-ти (ур состояния, ур движ Дарси, ур неразр) образ систему опред-х ур-й, из к-х можно получить результируещее диф ур-е фильтрации, отраж всю инф о процессе и содерж единст неизв — напор Н, завис от xyzt. 2. Емкостные

св-ва г.п. Водообильность — не общий V воды в порах, а вода кя может быть извлечена водозабором. Способность породы отдавать воду связана с емкостными св-ми. Удаление воды происх 2мя путями: свободн стекание под дейст Fтяж — гравит емкость, отжатие воды под воздейст доп нагрузки — упругая емкость _тк пр-с сжатия носит упр хар-р). Емк св-ва хар-ся и обратным пр-сом — когда порода приним доп V воды. Гравит емкость — ΔH – изменение уровня

воды соотв V вытекшей воды. Для однородного уплотн песка ΔV/wΔH = ΔV/ΔH = μ; w — S попер сечения. μ — коэф гравит емкости (водоотдачи), отн V вытекшей воды к Vосуш породы. Понятие «осушенности» - условно. После стекания воды в породе ост иммобилизац вода и вода на стыках пор, к-я явл гравит. Аналог коэф гравит водоотдачи при подьеме при подьеме уровня п.в. и заполнения пор водой явл коэф недостатка водонасыщ. Но его числ зн-е меньше, чем μ, тк в