Шпаргалка по высшей математике — страница 10

  • Просмотров 2770
  • Скачиваний 286
  • Размер файла 36
    Кб

проходящей через точки А(а;0) и В(0;b) - y-y1/y2-y1=x-x1/x2-x1—ур-е прямой в отрезках примет вид: y-0/b-0= x-a/0-a или: -ay= b(x-a), -ay-bx+ab=0 |¸ab; -y/b-x/a+1=0 |¸(-1); x/a+y/b=1. А-отрезок, отсекаемый на оси Оx; В-отрезок на оси Оy. Тогда прямую можно определить как прямую, заданную двумя точкамиÞA(a;b) на осиOx и B(0:b) на оси Oy. Подставив координаты этих точек в ур-е прямой, проходящей через две заданные точки, получим ур-е прямой в отрезках. 7 (38). Уравнение прямой с угловым

коэффициентом. Угловой коэффициент прямой- одна из характеристик расположения прямой на плоскости; её наклон относительно оси Оx (за угол наклона принимается Ða, отсчитываемый от оси Оx против движения часовой стрелки до этой прямой); tg угла наклона этой прямой к оси Оx. Если k>0, то a -острый; если a=0, то k=0, прямая параллельна оси Оx; если a=90°, то прямая параллельна оси Оy, k-не существует. Пусть положение прямой в прямоугольной

системе координат задано величиной отрезка, отсекаемого этой прямой на оси Оy и k этой прямой. Возьмём произвольную точку М (c;g). Тогда tg угла a наклона прямой найдём из прямоугольного треугольника МВN: tg a = MN/NB= y-b/x. Введём угловой коэффициент прямой k=tg a; получим k=y-b/x. y=kx+b - ур-е прямой с угловым коэффициентом. В зависимости от величин k и b возможны следующие варианты расположения прямой: 1) при в>0, прямая пересекает ось Оx выше начала

координат; при в<0, прямая Ç Оx ниже начала координат. 2)при k>0, прямая образует острый угол с Оx; при k<0,-тупой угол; при k=0-параллельна оси Оx; при k=µ-перпендикулярна Оx. 8 (39). Уравнение прямой, проходящей через данную точку М (x, y) с данным угловым коэффициентом k. 9 (40). Нормальное уравнение плоскости. Нормальное ур-е плоскости: x(Cos a) +y(Cos b)+z(Cos g)+r=0, где Cos a, Cos b, Cos g-направляющие Cos –сы нормального вектора; r-расстояние от начала

координат до плоскости. Общее ур-е приводится к нормальному виду путём умножения на нормирующий множитель. 10 (41). Условие параллельности и перпендикулярности прямых. 2) 1)Если прямые параллельны, то они образуют с осью OX одинаковые углы. Поэтому угловые коэф-ты k1 и k2 этих прямых равны. Обратно, если k1= k2, то углы наклона прямых к оси OX одинаковы, откуда следует, что данные прямые параллельны. Условием параллельности 2-х прямых яв-ся

равенство их угловых коэффициентов. 2)Формула tga=k2-k1/1+k1k2 определяет угол a между пересекающимися прямыми через tga. Если a=90, то эта формула оказывается неприменимой, т.к. tg=90 не существует. Если прямые взаимно перпендикулярны, то j2=j1+90, откуда tgj2= tg (j1+90)= -Сtgj1. tgj2= - 1/ tgj1. Заменяя tgj1 и Сtgj2 через k1 и k2, находим: k2= 1/ k1 или 1+ k1k2=0. Обратно, пусть k2= 1/ k1, это значит, что tgj2= -1/tgj1 откуда получаем j2=j1+90. Следовательно, угол между двумя данными прямыми