Шпаргалка по Статистике 3 — страница 3

  • Просмотров 1693
  • Скачиваний 27
  • Размер файла 727
    Кб

корреляционному моменту соответствующих сечений случайного процесса: RX(ti,tj)=M(X(~)* (ti)X* (tj)), где X* (ti) и X* (tj) – центрированные случайные величины, т.е. X* (ti)=X*(ti)-MX(ti); X* (tj)=X(tj)-MX(tj). Вариант 3 Понятие о законе распределения случайной величины. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Закон

распределения может быть задан аналитически, в виде таблицы или графически. Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения. Функция распределения. Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина Х в результате испытаний примет значения, меньше х, т.е. F(x)=P(X<x). Эта функция существует как для непрерывных, так и для дискретных

величин. Плотность вероятности. Плотность вероятности случайной величины X, функция р(х), такая, что при любых a и b вероятность неравенства а < Х < b равна . Их связь и свойства Функция распределения вероятности — просто функция плотности вероятности, проинтегрированная от - до определенного значения. Для целочисленных случайных величин интеграл заменен суммированием по соответствующим индексам. Функция распределения,

свойства: 1. Значения функции распределения принадлежат отрезку (0,1): ; 2. F(x) - неубывающая функция, т.е. , если ; 3. Если возможные значения случайной величины принадлежат интервалу (a,b), то: 1) F(x)=0 при ; 2) F(x)=1 при ; Плотность вероятности, свойства: 1) ; 2) 3) 4) Автокорреляционная функция (АКФ) Показывает связь сигнала (функции) с копией самого себя, смещённого на величину m. График автокорреляционной функции можно получить, отложив по оси

ординат коэффициент корреляции двух функций (базовой и функции сдвинутой на величину m) а по оси абсцисс величину m. Если исходная функция строго периодическая, то на графике АКФ тоже будет строго периодическая функция. Таким образом, из этого графика можно судить о периодичности базовой функции, а следовательно и о её частотных характеристиках. Определяется выражением , где значение поля в i-той точке. i=1…n. m – интервал

принимающий значения . Свойства автокорреляционной функции: 1) АКФ – четная. Т.е. R(m)=R(-m). 2) При m=0, АКФ=D(дисперсии) 3) При сложении неслучайной функции φ(t) и случайного процесса АКФ процесса не меняется.4)При умножении случайного процесса на неслучайную функцию φ(t) АКФ процесса умножается на произведение φ(ti) φ(tj). Вариант 4 Числовые характеристики положения случайной величины. Такая характеристика случайной величины, как