Ряды распределения и аналитические группировки

  • Просмотров 134
  • Скачиваний 12
  • Размер файла 87
    Кб

Задача 2. Постройте ряд распределения студентов по успеваемости: 2, 3, 3, 4, 2, 5, 5, 3, 3, 4, 5, 4, 5, 5, 5, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4. Подсчитайте локальные и накопительные частоты. Постройте полигон и кумуляту распределения. Определите моду, медиану, среднюю, дисперсию, среднее квадратическое отклонение, коэффициент вариации. Решение: Ряд распределения – это ряд чисел, в котором значение изучаемого признака (варианты), расположены в

определенном порядке: либо в порядке возрастания, либо убывания. Наряду с вариантами ряд распределения включает и частоты – величины, показывающие сколько раз каждая варианта встречается в данной совокупности. Сумма частот равна объему совокупности. Таким образом, ряд распределения состоит из вариант (х) и частот (f) В зависимости от прерывности или непрерывности варьирующего признака ряды распределения удобно представлять в

виде двух разновидностей: дискретного и вариационного (интервального). Дискретный ряд представляет собой ряд прерывных чисел. Например, распределение студентов по успеваемости (табл. 1). При непрерывной вариации распределение признака называется интервальным. Частоты относятся ко всему интервалу. В зависимости от вида ряда распределения по-разному можно изобразить их графически. Если ряд дискретный – строится полигон

распределения. Величина признака откладывается на оси абсцисс, частоты – на оси ординат. Вершины ординат соединяются прямыми линиями. Гистограмма распределения отличается от полигона тем, что на оси абсцисс берутся не точки, а отрезки, изображающие интервал, т.е. гистограмма, строится на Оценка (балл) Число студентов (частоты) Накопленные 2 2 2 3 8 10 4 12 22 5 8 30 Итого 30 В основе вариационного (интервального) ряда. По накопленным

частотам строится кумулятивная кривая (кумулята). Для определения средней арифметической надо сложить все варианты и полученную сумму разделить на число единиц, входящих в совокупность (объем совокупности). Средняя арифметическая бывает простая и взвешенная. Простая средняя используется тогда, когда каждая варианта встречается лишь один раз (1). Если каждая варианта встречается несколько раз, то следует подсчитать частоты и