Ряды динамики и распределения — страница 9

  • Просмотров 326
  • Скачиваний 12
  • Размер файла 188
    Кб

для любого n. Например, при простом случайном отборе выборочное среднее - несмещенная оценка среднего значения признака, - несмещенная оценка суммарного значения Y для совокупности, где - среднее значение признака по выборке. В теории и практике выборочных обследований часто приходится рассматривать смещенные оценки. Это обусловлено следующими причинами. Во-первых, в некоторых случаях, особенно при оценивании отношений двух

величин, смещенные оценки дают более достоверные результаты, чем несмещенные. Во-вторых, даже в случае использования теоретически несмещенных оценок ошибки наблюдения и неполучение ответов от респондентов могут привести к смещениям в распространенных результатах. Кратко опишем некоторые, наиболее часто используемые в статистической практике способы формирования вероятностной выборки. Простой случайный отбор. Простым

случайным отбором называется способ, при котором извлечение единиц из совокупности для обследования осуществляется методом жеребьевки или с использованием таблиц или генератора случайных чисел без деления этой совокупности на какие-либо классы или группы. Простую случайную выборку получают, отбирая последовательно единицу за единицей. Единицы в совокупности нумеруются числами от 1 до N, после чего выбирается

последовательность n случайных чисел, заключенных между 1 и N. Единицы совокупности, имеющие эти номера, составляют выборку. На каждом этапе отбора такой процесс обеспечивает для всех еще не выбранных номеров равную вероятность быть отобранными. Легко показать, что равную вероятность быть отобранными имеют все возможных выборок. Уже отобранные номера исключаются из списка, иначе одна и та же единица могла бы попасть в выборку

более одного раза. Поэтому такой отбор называется отбором без возвращения. Отбор с возвращением легко осуществим, но им, за исключением особых случаев, пользуются редко, поскольку нет особых оснований допускать, чтобы одна и та же единица встречалась в выборке дважды. При простом случайном отборе для получения выводов о параметрах совокупности используют выборочное среднее в качестве оценки среднего значения признака

совокупности, а дисперсию признака по выборке – для оценки дисперсии признака совокупности. Для простой случайной выборки усредненные выборочные средние и дисперсии точно равны среднему и дисперсии признака совокупности. Формулы оценивания при простом случайном отборе Статистические показатели Истинное значение Оценка Суммарное значение признака Среднее значение признака Дисперсия признака Дисперсия оценки суммарного