Розробка, дослідження системи керування на основі нейронної мережі — страница 7

  • Просмотров 1531
  • Скачиваний 10
  • Размер файла 1458
    Кб

їхньої реалізації з використанням сучасних засобів обчислювальної техніки та прикладного програмного забезпечення, уточнення структури та параметрів САР окремих енергетичних систем об’єкта керування згідно заданого критерію якості з використанням сучасних технологій на основі методів нечіткої логіки та нейромереж, дослідження об’єкта керування. 1. АНАЛІЗ МЕТОДІВ РОЗРОБКИ СИСТЕМ КЕРУВАННЯ ЕЛЕКТРОПРИВОДОМ ДИЗЕЛЬ-ПОТЯГУ

Дизель-потяг з тяговим електроприводом змінного струму як об’єкт керування У нашому випадку об’єктом керування є дизель-потяг з тяговим асинхронним електроприводом. Згідно [1], асинхронний тяговий електропривод локомотива є складною динамічною системою. Первинним джерелом живлення слугує дизель-генераторна установка. Далі у схему входять: випрямлювач (В); проміжна ланка постійного струму(ПЛПС); автономний інвертор

напруги(АІН); тягові асинхронні двигуни(ТАД), крутячі моменти яких передаються механічній передачі(МП) та навантаженню(Н) (локомотиву та потягу) через контакт колесо-рельс; сигнали керування для генератору та інвертору формуються під контролем мікропроцесорної системи керування(СК), що обробляє сигнали з датчиків. Енергетична система дизель-потяга може біти віднесена до класу багатозв’язкових нелінійних об’ктів керування.

Для таких об’єктів керування відсутні єдині підходи синтезу регуляторів, що забезпечують необхідні показники якості підтримання вихідних змінних у широкому діапазоні зміни обурюючих впливів та умов експлуатації. Визначним фактором при керуванні технологічними процесами в об’єктах з асинхронними електроприводами є регулювання швидкості їхніх двигунів. З позиції теорії електричних машин та електропривода основними та

найбільш економічним засобом регулювання швидкості асинхронного двигуна є частотне керування. Можливість керування швидкістю локомотива шляхом зміни частоти крутіння короткозамкнених асинхронних двигунів була доведена одразу після їхнього винаходження [2,8]. Реалізувати цю можливість вдалося лише з появою силових напівпровідникових пристроїв – спочатку тиристорів, а пізніше – транзисторів IGBT [3,11], що складають основу

перетворювачів частоти. Перетворювачі частоти з мікропроцесорною системою керування мають велику кількість функцій, що вільно програмуються та автоматично виконуються. Для даного об’єкта особливий інтерес представляють та можуть бути використані: - частотні пуск та останов двигуна з оптимальним за часом розгоном та гальмуванням; - повне керування моментом у всьому діапазоні частот; - векторне керування двигуном (при