Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса – Башфорта — страница 4

  • Просмотров 3151
  • Скачиваний 382
  • Размер файла 436
    Кб

Адамса-Моултона четвертого порядка . В силу того , что по сути fk+1 – неизвестная , то методы Адамса-Моултона (2.1.11),(2.1.12) называют неявными . В тоже время методы Адамса-Башфорта – называют явными . Теперь воспользовавшись явной формулой (2.1.7) , и неявной формулой (2.1.12) , используя их совместно , мы приходим к методу Адамса-Башфорта четвертого порядка : (2.1.13) Стоит обратить внимание , что в целом этод метод является явным . Сначало по

формуле Адамса-Башфорта вычисляется значение, являющееся “прогнозом” . Затем используется для вычисления приближенного значения , которое в свою очередь используется в формуле Адамса-Моултона . Таким образом формула Адамса-Моултона “корректирует” корректирует приближение , называемое формулой Адамса-Башфорта . Теперь рассмотрим произвольную систему линейных дифференциальных уравнений первого порядка : где A = Заданная

матрица размером NxN ; - вектор с N координатами , который подлежит определению . В связи с тем , что связь между искомыми неизвестными определяется матрицей коэффициентов A , на каждом шаге по времени , необходимо решить систему относительно неизвестных скоростей , для её решения воспользуемся модифицированным методом Гаусса , который описан в разделе 2.2 . Далее, интегрируя сначала ранее описанными методами : методом Эйлера на

первом шаге , трех точечным методом прогноза и коррекции с авто подбором шага , на малом промежутке времени и с малым начальным шагом , для повышения точности стартующих методов на оставшемся промежутке времени производим интегрирование с постоянным шагом – пяти точечным методом прогноза и коррекции Адамса-Башфорта (2.1.13) , [2] , [3] . 2.2 Модифицированный метод Гаусса Как типичный пример решения систем линейных дифференциальных

уравнений , рассмотрим систему четырех линейных алгебраических уравнений . Для решения системы четырех линейных алгебраических уравнений с четырьмя неизвестными модифицированным методом Гаусса необходимо Составить систему : (2.2.1) 1) Каждое уравнение делиться на коэффициент при X1 2) Теперь образуем нули в первом столбце матрицы системы : вычитаем 2-ое из 1-ого , 3-е из 2-ого , 4-ое из 3-его : (2.2.2) 3) Повторив еще раз эти операции получим

систему двух уравнений с двумя неизвестными , решение которой можно получить по формулам Крамера : (2.2.3) Решение же X1 и X2 можно получить , подставив в какое-либо из уравнений систем (2.2.1) и (2.2.2) и разрешив эти уравнения относительно соответствующей переменной . 3.ОПИСАНИЕ АЛГОРИТМА Программа начинается с вывода сообщения о программе . После происходит считывание необходимых исходных данных из файла , для дальнейшей