Разработка программы-калькулятора на Delphi - Формирование подмножества натуральных чисел с заданными параметрами — страница 4

  • Просмотров 3599
  • Скачиваний 331
  • Размер файла 430
    Кб

алгебраического уравнения с целочисленными коэффицен-тами с использованием схемы Горнера.   Представление рациональной дроби в виде цепной.   Представление цепной дроби в виде рациональной.   1.2.Оборудование и ПО ОС Microsoft Windows 7 Ultimate, среда программирования Borland Delphi 7. Аппаратная часть: Процессор: Intel Core i7-920, Видеокарта: GeForce GTX 275 Оперативная память: Kingston 3x2Gb RAM. Математическая основа решения, алгоритмы. 1. Numerator Эта программа

выполняет формирование подмножества натуральных чисел, объединённых общими делителями и остатком среди чисел данной размерности. Для этого сначала ищется наименьщее общее кратное (НОК) делителей, далее, находится 1-е число среди необходимой размерности, которое делит-ся на НОК с заданным остатком. Затем, к этому числу мы прибавляем НОК и получаем 2-е число и так далее, пока не дойдем до границ размерности. 2.Factorizator Эта программа

выполняет факторизацию числа, то есть разложение его на простые сомножители, а также формирует множество этих сомножителей и считает их сумму. Для начала ищем простые числа, на которые делится заданное число, проверяем кол-во повторений ( то есть степень этого простого чис-ла). Далее находим все делители числа и составляем из них множество. Вычисляем сумму делителей. 3.NOD_NOK Эта программа находит наименьшее общее кратное (НОК) и

наибольший общий делитель (НОД) заданной совокупности чисел, используя алгоритм Евклида. Для этого сначала мы считаем по этому алгоритму НОД 2х чисел - находим максимальное из двух, делим на 2-е с остатком, затем делим второе на полившийся остаток и так далее, пока не остаток не станет равным 0. Остаток, предшествующий остатку, равному 0 и будет НОДом. НОК находится перемножением двух исходных чисел и деление их на НОД. Далее, мы

находим НОД и НОК следующего числа с НОД и НОК предыдущей двойки. Про-должаем да тех пор, пока не найдем НОД и НОК всей совокупности. 4.Superhorner Эта программа находит рациональные решения алгебраического уравнения с целочисленными коэф-фицентами с использованием схемы Горнера. Для этого нужно ввести старшую степень неизвестного , коэффиценты при них и свободный член. Далее, свободный член раскладывается на рациональные

сомножители, которые в свою очередь подставляются в исходное уравнение. Для упрощения этой про-верки используется схема Горнера. Заключается она в том, что к коэф. при старшей степени прибавляем коэффицент старшей степени,умноженный на выбранный сомножитель, + коэффицент n-1 степени + коэффицент n-1 степени, умноженный на выбранный сомножитель и т.д. Если выполняется равенство, следовательно, этот сомножитель и является одним из