Разработка динамических моделей для транспортно-производственной системы — страница 7
включают в себя систему ограничений, целевую функцию. Система ограничений состоит из отдельных математических уравнений или неравенств, называемых балансовыми уравнениями или неравенствами. Целевая функция связывает между собой различные величины модели. Как правило, в качестве цели выбирается экономический показатель (прибыль, рентабельность, себестоимость, валовая продукция и т.д.). Поэтому целевую функцию иногда называют экономической, критериальной. Целевая функция – функция многих переменных величин и может иметь свободный член. Критерии оптимальности – экономический показатель, выражающийся при помощи целевой функции через другие экономические показатели. Одному и тому же критерию оптимальности могут соответствовать несколько разных, но эквивалентных целевых функций. Модели с одной и той же системой ограничений могут иметь различные критерии оптимальности и различные целевые функции. Решением экономико-математической модели, или допустимым планом называется набор значений неизвестных, который удовлетворяет ее системе ограничений. Модель имеет множество решений, или множество допустимых планов, и среди них нужно найти единственное, удовлетворяющее системе ограничений и целевой функции. Допустимый план, удовлетворяющий целевой функции, называется оптимальным. Среди допустимых планов, удовлетворяющих целевой функции, как правило, имеется единственный план, для которого целевая функция и критерий оптимальности имеют максимальное или минимальное значение. Если модель задачи имеет множество оптимальных планов, то для каждого из них значение целевой функции одинаково. Если экономико-математическая модель задачи линейна, то оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений. Таким образом, для принятия оптимального решения любой экономической задачи необходимо построить ее экономико-математическую модель, по структуре включающую в себе систему ограничений, целевую функцию, критерий оптимальности и решение. Для моделирования транспортно-производственных систем используется задачи линейного программирования, а именно транспортные задачи. Общая формулировка задачи имеет следующий вид: пусть осуществляется производство некоторого товара в пунктах A1, A2,…,Am. Объем производства товара в каждом пункте равен соответственно a1,a2,…,am. Товар необходимо доставить в магазины или потребителям, находящимся в других населенных пунктах: B1,B2,…,Bn. Известна потребность каждого потребителя в товаре: b1,b2,…,bn. Задана также стоимость Cij транспортировки товара
Похожие работы
- Рефераты