Расчет неупорядоченных площадных систем

  • Просмотров 143
  • Скачиваний 15
  • Размер файла 45
    Кб

Расчет неупорядоченных площадных систем Р.С.Шенгелов Теперь рассмотрим особенности расчетов неупорядоченных площадных систем. Очень часто системы водозаборных скважин имеют именно такой характер: в силу особенностей условий строительства и землепользования, исторически сложившиеся и т.д. Их точный расчет всегда возможен по принципу суперпозиции (суммирования взаимодействий), но это может быть очень громоздко и

трудоемко при выполнении многовариантных расчетов, так как количество скважин в системе может достигать десятков и даже сотен. Поэтому нередко используют методику приближенного расчета крупных площадных систем взаимодействующих скважин, который бывает вполне достаточен для решения двух важных задач: а) расчет влияния таких систем на некоторые удаленные от них точки (почему-либо интересные - например, на соседний водозабор);

б) предварительная оценка возможного суммарного дебита таких систем. Для приближенного расчета площадных систем используют идею "БОЛЬШОГО КОЛОДЦА", под которым понимается одна-единственная скважина с большим радиусом , эквивалентная всей системе, т.е. имеющая тот же суммарный дебит и дающая те же понижения в области влияния. Наиболее чисто этот прием обосновывается при отсутствии близкорасположенных границ - например,

для "схемы Тейса". Система состоит из скважин с разными дебитами и разным временем ввода в действие для каждой скважины (рис.1). Рис. 1. Определим по принципу сложения решений понижение уровня в некоторой точке в момент t, полагая, что расчетное время достаточно для наступления квазистационарного режима в точке: (введем долевые коэффициенты дебита ) . Учитывая, что, а две подчеркнутые группировки однородных членов можно

свернуть по свойствам логарифма: , , получим окончательное выражение в виде: . Видно, что полученное выражение для по форме аналогично действию одной скважины, находящейся на расчетном расстоянии от точки и действующей с суммарным дебитом в течение расчетного времени . Такая скважина и называется "большим колодцом". Некоторые комментарии: В частном случае равнодебитных скважин () долевые коэффициенты также равны между