Психологическая интуиция искусственных нейронных сетей — страница 3

  • Просмотров 24244
  • Скачиваний 1048
  • Размер файла 543
    Кб

решены задачи прогнозирования осложнений инфаркта миокарда, ранней диагностики и дифференциальной диагностики злокачественных опухолей сосудистой оболочки глаза, моделирования лечения и прогнозирования его непосредственных результатов у больных облитерирующим тромбангиитом, дифференциальной диагностики «острого живота», изучения иммунореактивности. Вообще, на пути применения искусственных нейронных сетей к

задачам из области биологии, медицины и психологии можно ожидать несколько важных результатов. Во-первых, нейронные сети, работая по неявным алгоритмам и решая задачи, не имеющие явного решения, по механизму решения задач приближаются к человеческому мозгу, что может дать важный материал для изучения процессов высшей нервной деятельности. Во-вторых, нейросети могут служить в качестве математического инструмента для научных

исследований при поиске взаимосвязей и закономерностей в больших информационных структурах, изучения взаимного влияния различных факторов и моделирования сложных динамических процессов. В силу этого разработка методов нейросетевого моделирования и анализа информации является актуальной задачей. Раздел информационной науки, называемый нейроинформатикой и начавшийся в свое время еще работами Розенблатта над теорией

обучения сетей перцептронов пережил несколько бумов и спадов. В настоящий момент самые общие представления о нейроинформатике таковы: Принципы работы нейрокомпьютеров напоминают взаимодействие клеток нервной системы - нейронов через специальные связи - синапсы. Основой работы самообучающихся нейропрограмм является нейронная сеть, представляющая собой совокупность нейронов - элементов, связанных между собой определенным

образом. Обучение нейронной сети достигается путем подстройки параметров - весов синапсов и характеристик преобразователей с целью минимизации ошибки определения примеров обучающей выборки - пар вида «требуемый выход - полученный выход». В обучении используется алгоритм сверхбыстрого вычисления градиента функции ошибки по обучаемым параметрам при помощи аппарата двойственных функций. Наличие методов, позволяющих

получать в высокопараллельном (при наличии соответствующего аппаратного обеспечения) режиме градиент функции ошибки позволяет использовать для обучения нейронных сетей обширный аппарат методов безусловной оптимизации многомерных функций. Опыт, накопленный исследователями в области нейроинформатики, показывает, что при помощи аппарата нейронных сетей возможно удовлетворение крайне острой потребности практикующих