Notice: Undefined offset: 0 in /var/www/referat.ru/public/skins/default/application/item/index.phtml on line 15

Notice: Undefined offset: 0 in /var/www/referat.ru/public/skins/default/application/item/index.phtml on line 16

Прогнозирование сегмента автомобильного рынка на примере московского региона — страница 3

  • Категория
  • Раздел
  • Просмотров 9731
  • Скачиваний 534
  • Размер файла 240
    Кб

прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, в частности, определение и расчет нотны и рационального объема выборки, а также регрессионный анализ нечетких данных.[2] Общая постановка регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи - дисперсионный анализ и дискриминантный анализ, давая единый подход к формально различным методам, полезна при

программной реализации современных статистических методов прогнозирования.[3] Основными процедурами обработки прогностических экспертных оценок являются проверка согласованности, кластер-анализ и нахождение группового мнения. Проверка согласованности мнений экспертов, выраженных ранжировками, проводится с помощью коэффициентов ранговой корреляции Кендалла и Спирмена, коэффициента ранговой конкордации Кендалла и

Бэбингтона Смита. Используются параметрические модели парных сравнений - Терстоуна, Бредли-Терри-Льюса - и непараметрические модели теории люсианов.[4] Полезна процедура согласования ранжировок и классификаций путем построения согласующих бинарных отношений. При отсутствии согласованности разбиение мнений экспертов на группы сходных между собой проводят методом ближайшего соседа или другими методами кластерного анализа

(автоматического построения классификаций, распознавания образов без учителя). Классификация люсианов осуществляется на основе вероятностно-статистической модели. Используют различные методы построения итогового мнения комиссии экспертов. Своей простотой выделяются методы средних арифметических и медиан рангов. Компьютерное моделирование позволило установить ряд свойств медианы Кемени, часто рекомендуемой для

использования в качестве итогового (обобщенного, среднего) мнения комиссии экспертов. Интерпретация закона больших чисел для нечисловых данных в терминах теории экспертного опроса такова: итоговое мнение устойчиво, то есть мало меняется при изменении состава экспертной комиссии, и при росте числа экспертов приближается к «истине». При этом в соответствии с принятым в подходом предполагается, что ответы экспертов можно

рассматривать как результаты измерений с ошибками, все они — независимые одинаково распределенные случайные элементы, вероятность принятия определенного значения убывает по мере удаления от некоторого центра — «истины», а общее число экспертов достаточно велико. Эти инструменты позволяют давать наиболее реалистичные прогнозы с достаточной степенью достоверности, но проблема в том, что для современного этапа