Проектирование устройства сбора данных — страница 7

  • Просмотров 2348
  • Скачиваний 207
  • Размер файла 161
    Кб

основе произведенной разметки блок-схемы алгоритма. Каждому из состояний а0 , а1 ,... управляющего автомата соответствует узел графа (рис.6). Дугами графа изображаются переходы автомата из одного состояния в другое. Возле каждой дуги указывается условие (если оно есть) перехода (Х) и выполняемая на данном тактовом интервале микрокоманда Y. Переходы синхронного автомата из одного состояния в другое происходят в тактовые моменты

времени под действием синхроимпульсов и входных сигналов. X2 ; -- X2 ; -- — ; Y2 X1 ; -- X1 ; Y3 — ; Y1 а2 а1 а3 а0 Рис.6 4.4.2Этап структурного синтеза УУ Этот этап выполняется на основе формальных методов и включает в себя: - расчет требуемого объема памяти УУ; - выбор способа кодирования возможных состояний автомата; - выбор типа применяемых логических элементов и триггеров; - нахождение оптимальной с точки зрения минимизации числа элементов и

связей между ними структуры комбинационного цифрового устройства (КЦУ), входящего в состав схемы УУ. Определение требуемого числа триггеров ЗУ устройства управления и кодирование состояний УУ Из граф-схемы видно, что управляющий автомат должен иметь N=4 состояний ( а0 ¸ а3 ). Требуемое число триггеров находим как минимальное k, удовлетворяющее условию N £ 2k. Имеем kмин = 2. Поскольку каждый из триггеров обладает двумя

устойчивыми состояниями , совокупность двух триггеров позволяет зафиксировать максимально 22 = 4 различных состояния. В нашем случае автомат как раз и должен иметь четыре состояния, для фиксации которых требуется два триггера. Задавая произвольно Состояние УУ Состояния триггеров ЗУ Вид перехода Входные сигналы Q2 Q1 Q(t)® Q(t+1) j(t) k(t) а0 0 0 0 0 0 --- а1 1 0 1 0 1 --- а2 0 1 0 1 — 1 а3 1 1 1 1 — 0 Таблица 1 Таблица 2 различные четыре состояния двух триггеров

можно произвести кодирование состояния автомата, как это сделано в табл.1. Выбор типа логических элементов и триггеров для реализации УУ Если к цифровому устройству, реализуемому на микросхемах низкой и средней степени интеграции, не предъявляются жесткие требования в отношении быстродействия, потребляемой мощности, габаритов и ширины рабочего диапазона температур, то выбор, как правило, делается в пользу наиболее развитой

серии микросхем широкого применения К1553, выполненные по технологии ТТЛ. Предполагается, что проектируемое УСД предназначено для работы в помещениях с составе стандартной аппаратуры. Поэтому требования в отношении потребляемой мощности, ширины рабочего диапазона температур и габаритов не являются жесткими. Кроме того, в соответствии с заданием частота синхроимпульсов f = 500 кГц, что соответствует длительности тактового