Проекция Гаусса

  • Просмотров 2327
  • Скачиваний 21
  • Размер файла 30
    Кб

1. Понятие о форме и размерах земли. Географические координаты При решении ряда геодезических задач требуется знать форму и размеры Земли, которая не является правильным геометрическим телом. Ее физическая поверхность (и в особенности поверхность суши) очень сложная, ее невозможно выразить какой-либо математической формулой. Поэтому в геодезии введено понятие уровенной поверхности. Уровенной называют выпуклую поверхность,

касательная к которой в любой точке перпендикулярна направлению отвесной линии. Следовательно, уровенную поверхность мысленно можно провести через любую точку на физической поверхности земли, под землей и над землей. Реально уровенную поверхность можно представить как водную поверхность пруда, озера, моря, океана в спокойном состоянии. Поверхность Мирового океана, мысленно продолженная под сушей, названа поверхностью

геоида, а тело, ограниченное ею, – геоидом. Но и поверхность геоида из-за неравномерного размещения масс в теле Земли также очень сложная и не выражается какой-либо математической поверхностью, например поверхностью шара. Исследования формы Земли астрономо-геодезическими методами показали, что Земля сплюснута у полюсов (вследствие вращения Земли вокруг своей оси). Поэтому в качестве математической поверхности,

характеризующей форму Земли, принимают поверхность такого эллипсоида вращения, т.е. тела, получающегося от вращения эллипса вокруг его малой (полярной) оси, который по форме наиболее близко подходит к поверхности геоида. Размерами эллипсоида являются длины его большой а и малой b полуосей, а также сжатие, которое определяют по формуле: а = (а – b)/а. На протяжении двух последних столетий ученые неоднократно определяли размеры

земного эллипсоида. При приближенных расчетах поверхность эллипсоида принимают за поверхность шара (равновеликого по объему земному эллипсоиду) с радиусом 6371,1 км, округляя это значение до 6370 км, а в некоторых случаях до 6400 км. Для небольших участков земной поверхности поверхность эллипсоида принимают за плоскость. Положения точек земной поверхности на карте и плане определяют координатами. Наиболее часто пользуются