Применение метода частотных диаграмм к исследованиям устойчивости систем с логическими алгоритмами управления

  • Просмотров 1940
  • Скачиваний 435
  • Размер файла 118
    Кб

Московский Государственный Технический Университет им. Н.Э. Баумана Курсовая работа по курсу “Нелинейные САУ” на тему: Применение метода частотных круговых диаграмм к исследованию устойчивости систем с логическими алгоритмами управления. Выполнил: ст-т гр. АК4-81 Смык В.Л. Руководитель: профессор Хабаров В.С. Реутов 1997 г. Применение метода частотных круговых диаграмм к исследованию устойчивости систем с логическими

алгоритмами управления. На ранней стадии развития теории автоматического регулирования требование устойчивости работы системы было первым и обычно единственным и содержание большинства теоретических исследований сводилось к иследованию устойчивости. “Термин “устойчивость” настолько выразителен, что он сам за себя говорит”,-отмечают в начале изложения теории устойчивости Ж. Ла Салль и С. Лефшец [1]. Это вполне

справедливо, но, несмотря на это, неточности и нелогичности можно встретить как раз не в математических, а в смысловых понятиях и терминах. Устойчивостью любого явления в обиходе называю его способность достаточно длительно и с достаточной точностью сохронять те формы своего существования, при утрате которых явление перестает быть самим сабой. Однако не только в обиходе, но и в научной терминалогии устойчивым называют не

явление, а систему, в корой оно наблюдается, хотя это не оправдывает логически. Устойчивы ли физические тела - шар или куб? Такой вопрос будет иметь смысл, если речь идет о материале, из которого они сделаны. (Металлический шар устойчив, шар из дыма нет.) Теорию управления интересует, однако, не эта прочнасная устойчивость. Подразумевается, что система управления как инженерная конструкция заведома устойчива, и в теории изучается

устойчивость не самой системы, а ее состояний и функционирования. В одной и той же системе одни состояния или движения могут быть устойчивыми, а другие не устойчивыми. Более того, одно и то же жвижение может быть устойчивым относительно одной переменной и неустойцивым относительно другой - это отмечал еще А.М. Ляпунов [2]. Вращение ротора турбины устойчиво по отношению к угловой скорости и неустойчиво относительно угла поворота