Применение алгоритма RSA для шифрования потоков данных — страница 5
Шифрование и дешифрование текстов можно представлять себе как процессы переработки целых чисел при помощи ЭВМ, а способы, которыми выполняются эти операции, как некоторые функции, определённые на множестве целых чисел. Всё это делает естественным появление в криптографии методов теории чисел. Кроме того, стойкость ряда современных криптосистем обосновывается только сложностью некоторых теоретико-числовых задач. Но возможности ЭВМ имеют определённые границы. Приходится разбивать длинную цифровую последовательность на блоки ограниченной длины и шифровать каждый такой блок отдельно. Мы будем считать в дальнейшем, что все шифруемые целые числа неотрицательны и по величине меньше некоторого заданного (скажем, техническими ограничениями) числа m. Таким же условиям будут удовлетворять и числа, получаемые в процессе шифрования. Это позволяет считать и те, и другие числа элементами кольца вычетов а число представляет собой сообщение в зашифрованном виде. Простейший шифр такого рода - шифр замены, соответствует отображению при некотором фиксированном целом k. Подобный шифр использовал еще Юлий Цезарь. Конечно, не каждое отображение подходит для целей надежного сокрытия информации. В 1978 г. американцы Р. Ривест, А. Шамир и Л. Адлеман (R.L.Rivest. A.Shamir. L.Adleman) предложили пример функции RSA. Эта функция такова, что 1) существует достаточно быстрый алгоритм вычисления значений 2) существует достаточно быстрый алгоритм вычисления значений обратной функции 3) функция обладает некоторым «секретом», знание которого позволяет быстро вычислять значения становится трудно разрешимой в вычислительном отношении задачей, требующей для своего решения столь много времени, что по его прошествии зашифрованная информация перестает представлять интерес для лиц, использующих отображение в качестве шифра. Еще до выхода из печати статьи копия доклада в Массачусетском Технологическом институте, посвящённого системе RSA. была послана известному популяризатору математики М. Гарднеру, который в 1977 г. в журнале Scientific American опубликовал статью посвящённую этой системе шифрования. В русском переводе заглавие статьи Гарднера звучит так: Новый вид шифра, на расшифровку которого потребуются миллионы лет. Именно эта статья сыграла важнейшую роль в распространении информации об RSA, привлекла к криптографии внимание широких кругов неспециалистов и фактически способствовала бурному прогрессу этой области, произошедшему в последовавшие 20 лет. 2.1. система шифрования RSA Пусть и натуральные числа. Функция реализующая схему RSA, устроена следующим образом
Похожие работы
- Рефераты
- Контрольные