Построение эконометрической модели и исследование проблемы автокорреляции с помощью тестов Бреуша — страница 3

  • Просмотров 209
  • Скачиваний 7
  • Размер файла 105
    Кб

стационарность используются коррелограммы рядов, а также тесты «единичного корня». В данной работе будет рассмотрен тест Дики-Фуллера. Очевидно, что все три ряда являются нестационарными, что можно определить по характерному рисунку «убывающей экспоненты» на графике автокорреляционной функции, а также первый выступающий лаг на графике частной автокорреляционной функции. Следовательно, проверку исходных рядов на

стационарность следует дополнить тестом Дики-Фуллера. Результаты приведены ниже: ADF Test Statistic -20.99004 1% Critical Value* -4.2412 5% Critical Value -3.5426 10% Critical Value -3.2032 Dependent Variable: D(IG) Method: Least Squares Included observations: 35 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. D(IG(-1)) -2.200495 0.104835 -20.99004 0.0000 @TREND(1999:1) 9.663892 2.439289 3.961766 0.0004 Durbin-Watson stat 2.352758 Prob(F-statistic) 0.000000 ADF Test Statistic -5.278444 1% Critical Value* -4.2412 5% Critical Value -3.5426 10% Critical Value -3.2032 Dependent Variable: D(CONS) Method: Least Squares Included observations: 35 after adjusting endpoints Variable

Coefficient Std. Error t-Statistic Prob. D(CONS(-1)) -1.636006 0.309941 -5.278444 0.0000 @TREND(1999:1) 12.54844 3.021702 4.152773 0.0002 Durbin-Watson stat 2.101394 Prob(F-statistic) 0.000000 ADF Test Statistic -9.618956 1% Critical Value* -4.2412 5% Critical Value -3.5426 10% Critical Value -3.2032 Dependent Variable: D(GDP) Method: Least Squares Included observations: 35 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. D(GDP(-1)) -2.088636 0.217137 -9.618956 0.0000 @TREND(1999:1) 26.31412 6.414595 4.102226 0.0003 Durbin-Watson stat 2.486933 Prob(F-statistic) 0.000000 При помощи коррелограммы первых разностей данных всех трёх рядов обнаруживается, что необходимо

ввести один лаг для всех рядов во вспомогательное уравнение теста. И после того, как был проведён тест Дики-Фуллера, выяснилось, что ряды интегрированы первого порядка или стационарны в первых разностях со спецификацией тренда и одним лагом. Однако ряды IG и GDP имеют чётко видную сезонность, что видно на Рисунке 1 Приложения 1, поэтому для них дополнительного проводится тест Филипса-Перрона, данные которого находятся в Приложении

2. Имеем: - ряды нестационарны в уровнях, но стационарны в первых разностях; - по имеющимся данным можно строить модель множественной классической линейной регрессии. По предварительному анализу, можно сказать, что модель, которая будет построена, возможно, будет обладать проблемой автокорреляции вследствие цикличности показателей, используемых для построения уравнения регрессии. ВВП имеет дело с волнообразностью деловой

активности, которая при построении модели может служить причиной автокорреляции. Строим уравнение регрессии: Dependent Variable: GDP Method: Least Squares Date: 12/11/08 Time: 16:34 Sample: 1999:1 2008:2 Included observations: 38 GDP=C(1)+C(2)*Cons+C(3)*IG Coefficient Std. Error t-Statistic Prob. C(1) 90.71828 36.69767 2.472045 0.0184 C(2) 0.875856 0.076378 11.46745 0.0000 C(3) 1.190895 0.030510 39.03232 0.0000 R-squared 0.998324 Mean dependent var 4283.858 Adjusted R-squared 0.998228 S.D. dependent var 2609.517 S.E. of regression 109.8386 Akaike info criterion 12.31156 Sum squared resid 422257.9 Schwarz criterion 12.44084 Log likelihood -230.9196 Durbin-Watson stat 0.589082