Построение 3D-моделей циклических молекул в естественных переменных

  • Просмотров 123
  • Скачиваний 10
  • Размер файла 30
    Кб

Построение 3D-моделей циклических молекул в естественных переменных Е.Г. Атавин, Омский государственный университет, кафедра органической химии 1. Введение Интерес к геометрическому строению циклических молекул, интенсивно изучаемых как экспериментальными, так и расчетными методами, определяется не только их важнейшей ролью в органической химии и биохимии, но также сложностью и практически неисчерпаемым количеством

соответствующих конформационных вариантов, особенно в случае гетероциклических соединений. Для построения модели (т.е. вычисления 3N декартовых координат) N-атомной молекулы в общем случае достаточно задать 3N-6 значений структурных параметров - межъядерных расстояний, валентных углов и углов внутреннего вращения, называющихся также внутренними или естественными переменными и легко оценивающихся по имеющимся эмпирическим

закономерностям [1]. Оставшиеся 6 степеней свободы связаны с выбором положения и ориентацией молекулы в пространстве. Тем не менее, число структурных параметров, описывающих строение N-атомных моноциклических молекул, равно 3N (N межъядерных расстояний, N валентных углов и N углов внутреннего вращения). Из этих параметров лишь 3N-6 являются независимыми, и их значения можно выбирать произвольно (в пределах условия замыкания цикла).

Оставшиеся 6 параметров называются зависимыми и определяются значениями независимых параметров. Отметим, что пространственное строение нециклических молекул полностью описывается заданием значений N-1 межъядерных расстояний, N-2 валентных углов и N-3 углов внутреннего вращения. Замыкание цепи атомов в цикл увеличивает на единицу количество независимых межъядерных расстояний. При этом количество независимых угловых

переменных уменьшается и становится недостаточным для непосредственного использования ранее рассмотренных алгоритмов построения нециклических молекул [2]. Алгоритмы построения циклических молекул по естественным переменным можно разделить на две группы. Для итерационных методов (методы "стягивающего потенциала" и Шераги) характерна слабая чувствительность к качеству стартового приближения значений структурных